

Туапсе, 20 сентября 2022 г.

КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ ЗОЛОТА С АРОМАТИЧЕСКИМИ ДИИМИНАМИ: СИНТЕЗ, СТРУКТУРНЫЕ ОСОБЕННОСТИ И ПРОТИВООПУХОЛЕВАЯ АКТИВНОСТЬ

Н.Ю. Шмелев, Е.А. Бардина, Е.В. Макотченко, <u>А.Л. Гущин</u>

N*Новосибирский государственный университет *настоящая наука

Лаборатория химии комплексных соединений ИНХ СО РАН

Редокс-активные лиганды способны находится в нескольких стабильных окислительных состояниях, между которыми возможны обратимые переходы

Переходные металлы

	Sc	Ті	V	Cr	Mn	Fe	Со	Ni	Cu	Zn			
	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd			
		Hf	Та	W	Re	Os	Ir	Pt	Au	Hg			

Переходные металлы

Моно- и полиядерные комплексы переходных металлов с ароматическими акцепторными дииминами:

□ Катализируют окислительно-восстановительные реакции

Участвуют в процессах внутримолекулярного переноса электрона

• Обладают противоопухолевой активностью

Переходные металлы

Моно- и полиядерные комплексы переходных металлов с ароматическими акцепторными дииминами:

□ Катализируют окислительно-восстановительные реакции

Участвуют в процессах внутримолекулярного переноса электрона

• Обладают противоопухолевой активностью

I. Моноядерные комплексы Au(I) с N-гетероциклами. *Анти*-хелатный эффект. Фотолюминесценция

Комплексы Au(I) с BIAN/MIAN

6

 $[Au(PPh_3)CI] + dpp-mian + Ag(CF_3SO_3) \xrightarrow{CH_2Cl_2; r.t.; 16 h}{- AgCl}$

	/ ^{iPr}		
Ţ	\searrow	N,	0
\=	=<	\succ	
		\diamond	\land
	بر		\checkmark

dpp-mian

[Au(PPh₃)(dpp-mian)](CF₃SO₃) $\eta = 85 \%$ $E_{1/2}^{1} = -0.43 \text{ B}, \Delta E_{1} = 0.08 \text{ B}$ $E_{2}^{2} = -1.37 \text{ B}$

- Угол P-Au-N близок к 180° (развернутый)
- Анти-хелатный эффект: предпочтение линейной геометрии для удовлетворения 3с/4е связи P-Au-N1 (nN → σ*(Au-P))
- Нековалентные взаимодействия Au...O и Au...N

Weinhold, F.; Landis, C. Vertical trends in transition-metal bonding. Valency and Bonding: A Natural Bond Orbital Donor-Acceptor Perspective 2005, 526–530.

	Au-P	Au-N ₁	Au-N ₂ / Au-O	C-C	C=0	C=N ₁	C=N ₂
Au(dpp-bian)(PPh ₃)](CF ₃ SO ₃)	2.22	2.12	2.69	1.54	-	1.28	1.32
[Au(dpp-mian)(PPh ₃)](CF ₃ SO ₃)	2.24	2.10	2.88	1.54	1.22	1.28	-

Комплексы Au(I) с BIAN/MIAN

[Au(PPh₃)(2-Me-Ph-BIAN)]⁺

[Au(PPh₃)(4-Me-Ph-BIAN)]⁺

	Au-P	Au-N ₁	Au-N ₂	∆Au-N
Au/dpp-bian (орто)	2.22	2.12	2.69	0.57
Au/2-mp-bian (орто)	2.23	2.15	2.55	0.40
Au/4-mp-bian (пара)	2.21	2.19	2.45	0.26

Стерический фактор:

- Наименее симметричная структура (линейная геометрия) объемные заместители в орто-положении (i-Pr);
- Наиболее симметричная структура (треугольная геометрия) менее объемные заместители в *орто*-положении (Ме) или их отсутствие

Комплексы с производными 4,5-диазафлуоренона

Комплексы Au(I) с производными фенантролина

Комплексы Au(I) с производными фенантролина

Классические π - π взаимодействия (Н^{$\delta+$}...C^{$\delta-$})

Неклассические π - π взаимодействия (С^{δ +</sub>...C^{δ +})}

C...C 3.31-3.56 Å

	Au-P	Au-N ₁	Au-N ₂	∆Au-N	P-Au-N ₁	P-Au-N ₂	ΔP-Au-N
I	2.219	2.135	2.498	0.363	166.83	117.58	49.25
П	2.218	2.151	2.472	0.321	159.14	129.57	29.57
ш	2.218	2.496	2.140	0. 356	166.15	119.22	26.93
IV	2.223	2.402	2.271	0.131	158.30	131.04	27.26
v	2.218	2.428	2.279	0.149	155.67	136.43	19.24

Симметричные комплексы Cu(I), Ag(I) с ocphen

Координация N,N-гетероциклов к Au(I). Анти-хелатный эффект

12

Фотофизические характеристики комплексов І-V в твердом состоянии при комнатной температуре

	Excitation max, nm	Emission max, nm	Emission lifetime, μs	QY, % (λ _{ex} = 450 nm)	CIE coordinate (x; y)
	350	550	4.1	0.0	(0.437;0.526)
	450	630	5.6	0.9	(0.571;0.427)
II	350	445, 490, 526, 565	4.6	1.0	(0.332;0.371)
	450	545	6.1		(0.422;0.538)
	350	530	1.9	0.2	(0.350;0.430)
	450	640	6.5	0.5	(0.471;0.517)
N7	350	550	2.9	1 0	(0.416;0.564)
IV	450	625	9.5	1.5	(0.618;0.382)
V	350	540	1.7	2.0	(0.421;0.526)
V	450	640	4.0	2.0	(0.607;0.392)

П

Cŀ

H₃C

C

H₃C-

Спектры возбуждения ФЛ для излучения 630 нм и спектры ФЛ в диапазоне возбуждения 300–540 нм для **IV** (Т = 300 К)

Координаты CIE 1931 при возбуждении на 350 и 450 нм

Множественная эмиссия: НЕ-полоса около 550 нм и LE-полоса около 630 нм

II. Биядерные комплексы Au(I) с 2,2'-бипиридинами. Внутримолекулярные взаимодействия Au...Au. Фотолюминесценция

Chem. Soc. Rev.: 2008, 37, 1931; 2008, 37, 1806; 2012, 41, 370; Coord. Chem. Rev. 2011, 255, 2111

Комплексы Au(I): аурофильные взаимодействия

Аурофильные взаимодействия (АВ) – специфические внутри- и межмолекулярные связи между кажущимися закрытыми центрами Au(I) (5d¹⁰)

- Релятивистские эффекты ответственны за АВ;
- АВ могут обеспечить такую же энергию стабилизации кристаллической упаковки, как и водородные связи;
- Люминесценция: АВ влияют на люминесцентные свойства. Они повышают вероятность перехода и уменьшают энергетический зазор между излучающим и принимающим уровнями энергии;
- Фотокатализ: АВ помогает уменьшить энергетический зазор между НОМО и LUMO

Золото проявляет максимальный релятивистский эффект среди своих локальных соседей (Pt и Hg)

между 5d заполненными и 6s (6p) вакантными орбиталями

Биядерные комплексы $Au(I) c R_2 bpy$

MeO₂Ć

Биядерные комплексы Au(I) с R₂bpy

	Au-P	Au-N ₁	Au-N ₂	AuAu
5	2.24	2.10	2.12	3.16
4	2.24	2.10	2.10	3.40
3	2.24	2.09	2.10	3.13

Комплексы **3** и **5:** небольшой ковалентный вклад в Au(I)…Au(I) Комплекс **4**: нековалентные контакты Au(I)…Au(I)

t-Bu

Фотолюминесценция биядерных комплексов

Фотофизические характеристики комплексов 1-5 в твердом состоянии при 300 К

	Excitation Max, nm	Emission Max, nm	Lifetime, µs
1	300, 450	400, 510	2.8
2	300, 345	415, 460, 480	2.4
3	300, 375	367, 380, 460	3.3
4	300, 400	415, 460, 480	2.8
5	300	580	7

t-Bu

- Заметный батохромный сдвиг полосы ФЛ для 5 (электронные и конформационные эффекты);
- Электронные переходы различной природы (MLCT, LMCT, LLCT) ответственны за ФЛ;
- Значительный вклад π-орбиталей бипиридина в ФЛ. Влияние природы заместителей;
- Отсутствие корреляции между расстоянием Au…Au и положением эмиссионной полосы.

III. Цитотоксические свойства комплексов Au(I)

Комплексы золота как противораковые агенты

Комплексы Au(I) как противораковые агенты

22

- Au(I) для связывания с SH-группами раковых клеток
- Липофильные лиганды для проникновения через мембрану клетки
- Полициклические ароматические плоские лиганды для интеркаляции ДНК
- Редокс-активные лиганды, индуцирующие АФК и приводящие к аддитивному эффекту

Комплексы Au(I): цитотоксичность

	Соединение	MCF-7	MDA-MB 231	MRC-5	SF
	1	0.30 ± 0.06	1.7 ± 0.3	4.4 ± 1.3	15
	L1	>100	>100	>100	
ſ	2	0.10 ± 0.03	0.47 ± 0.04	0.90 ± 0.29	9
Į	L2	3.7 ± 1	>5.5	3.9 ± 1.0	1
	3	0.19 ± 0.08	0.67 ± 0.06	0.72 ± 0.18	4
	L3	>50	>50	>50	MDA-MB-231→ Triple-negative breast cancer (рак молочной железы)
	Прекурсор	NA	0.63 ± 0.10	NA	MCF-7 → hormone-dependent breast cancer (рак молочной железы)
					MPC-5 \rightarrow human lung fibroblasts

IC₅₀ (µМ), 72 ч обработки

MRC-5 → human lung fibroblasts
 (здоровые фибробласты легких)

Комплексы Au(I): интеркаляция ДНК

Спектры флуоресценции EtBr-ДНК для 2

Константы тушения (Ksv) и связывания с ДНК (K)

	Ksv, 10 ³ M ⁻¹	K, 10 ³ M ⁻¹
1	26.9 (±0.9)	16.9 (±0.7)
2	27.9 (±0.6)	23 (±1)
3	27.5 (±0.8)	20 (±3)
L1	11.0 (±0.7)	4.5 (±0.5)
L2	16.3 (±0.4)	8 (±1)
L3	_	-

Комплексы Au(I): активные формы кислорода

□ Несимметричная координация потенциально бидентатных лигандов к Au(I)

более выгодна, чем симметричная (анти-хелатный эффект);

Повышенная склонность Au(I) к аурофильным взаимодействиям приводит к

необычной скрученно-мостиковой функции 2,2'-бипиридина;

□ Комплексы Au(I) с редокс-активными дииминовыми лигандами – новые

перспективные противораковые агенты мультимодального механизма

действия.

Благодарности

Никита Шмелев

Тесфу Окубазгхи

Елена Бардина

Е.В. Макотченко

Благодарности

27

Санкт-Петербургский государственный университет

Институт химии

А.С. Новиков

А.В. Ткачев

П.А. Абрамов В.Ю. Комаров М.И. Рахманова И.В. Мирзаева

грант № 21-13-00092

生物及化學系 Department of Biology and Chemistry

М.В. Бабак

Спасибо за внимание!

Аурофильные взаимодействия в катализе

Chem Soc Rev

 View Article Online View Journal | View Issue

 Check for updates
 Dinuclear gold catalysis

 Cite this: Chem. Soc. Rev., 2021.
 Wenliang Wang,^a Cheng-Long Ji,^a Kai Liu,^a Chuan-Gang Zhao,^a Weipeng Li^a and Jin Xie [®] *^{ab}

- В некоторых случаях биядерные комплексы золота работают лучше, чем моноядерные из-за существования аурофильных взаимодействий и других эффектов.
- Необходимо глубокое изучение механизма для понимания роли двух золотых центров в катализе. Что касается реакций сочетания, то сейчас мы знаем только то, что аурофильное взаимодействие между двумя атомами золота может уменьшить его окислительно-восстановительный потенциал. Поэтому, когда стадия окисления биядерного комплекса является скорость определяющей, вполне приемлемо, что реакция может протекать более гладко.
- В области фотокатализа исследования показали, что аурофильное взаимодействие помогает уменьшить энергетический зазор между орбиталями НОМО и LUMO, что способствует электронному переходу.

- 19 век Роберт Кох использовал К[Au(CN)₂] для уничтожения микробактерий, вызывающих туберкулез.
- 1934 Жак Форестье использовал К[Au(CN)₂] для лечения ревматоидного артрита → высокая токсичность.
- 1925-1982 тиолатные комплексы золота(I) для лечения туберкулеза и ревматоидного артрита
 санокризин, миокризин и солганол.
- 1982 Ауранофин был внедрен в клиники для лечения ревматоидного артрита (Ридаура[®])
- В настоящее время Ауранофин проходит клинические испытания как противоопухолевое средство.

Аи комплекс	Терапевтический эффект
Дитиокарбаматные комплексы Au(III)	 помогают преодолеть внутреннюю и приобретенную резистентность к цисплатину; реагируют с ДНК и вызывают повреждения, которые восстанавливаются менее эффективно, чем повреждения, вызванные цисплатином подавляют активность протеасом и вызывают апоптоз за счет связывания субъединицы 20S протеасомного комплекса
Порфириновые комплексы Au(III)	 индуцируют апоптоз в различных раковых клетках посредством остановки клеточного цикла; ингибируют рост опухолевых ксенотрансплантатов у мышей
Комплексы Au(I) с дифосфинами и N- гетероциклическими карбенами	 вызывают апоптоз путем ингибирования тиоредоксина и тиоредоксинредуктазы в митохондриях, что приводит к усилению окислительного стресса и потере мембранного потенциала митохондрий

ROS detection by fluorescence microscopy

L2

L1

Scale bar 0.1m L3 m

Hoechst

DCFDA

Combined

1

2

3

0.1mm

Investigation of the anticancer activity, MTT assay

(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide **(MTT)**

(*E*,*Z*)-5-(4,5-dimethylthiazol-2-yl)-1,3-diphenylformazan (Formazan)