Пределы обнаружения элементов при ДДП-АЭС анализе сталей с искровым пробоотбором и при введении в плазму растворов рассчитывали по 3s-критерию вариации фонового сигнала вблизи аналитической линии. При использовании искрового пробоотбора они составляют $n\cdot 10^{-5}$ % мас. для Мп и V; $n\cdot 10^{-4}$ % мас. для Сг, Си и Ni; $n\cdot 10^{-3}$ % мас. для Мо и Si. В случае распыления растворов пределы обнаружения находились в диапазоне от $n\cdot 10^{-4}$ до $n\cdot 10^{-2}$ % мас., что выше, чем при анализе аналогичных объектов методом ДДП-АЭС с искровым пробоотбором. Тем не менее, полученных пределов обнаружения достаточно для определения интересующих элементов в образцах сталей.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта 19-33-60059.

Список литературы

- [1]. Shelpakova I.R. et al. Spectral methods for analysis of high-purity gallium with excitation of spectra in the two-jet arc plasmatron // J. Anal. At. Spectrom., 2002.
- [2]. Tsygankova A.R., Kuptsov A.V., Narozhnykh K.N. et al. Analysis of trace elements in the hair of farm animals by atomic emission spectrometry with DC arc excitation sources // J. Pharm. Sci. & Res., 2017.
- [3]. Yudelevich I.G. et al. A two-jet plasmatron for the spectrochemical analysis of geological samples // Spectrochim. Acta Part B, 1984.
- [4]. Урманбетов К., Таштанов Р.А., Жеенбаев Ж.Ж. Усовершенствованный двухструйный плазматрон и его возможности в атомно-эмиссионном спектральном анализе // Аналитика и контроль, 2005.
- [5]. Лабусов В.А., Гаранин В.Г., Зарубин И.А. Новые спектральные комплексы на основе анализаторов МАЭС // Заводская лаборатория. Диагностика материалов, 2017.

ИССЛЕДОВАНИЕ ПРОЦЕССОВ СОРБЦИИ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ ИЗ РАСТВОРОВ НА МОДИФИЦИРОВАННЫХ УГЛЕРОДНЫХ МАТЕРИАЛАХ

Левченко Л.М., Сагидуллин А.К., Сапрыкин А.И. ИНХ СО РАН, Новосибирск, Россия luda@niic.nsc.ru

DOI: 10.26902/UDL2020 16

В настоящее время в технологиях очистки сточных вод наибольшее распространение получили методы сорбции. Отличием является несложное аппаратурное оформление, большой выбор различных сорбентов, проведение процесса очистки до санитарного уровня по примесям металлов при малых затратах [1-7].

Целью работы было исследование процессов сорбции тяжелых металлов из растворов на новых нанопористых углеродных модифицированных сорбентах (НУМС). Процесс сорбции модельной сточной воды от примесей тяжелых металлов на НУМС-Ј, НУМС-О проводили в динамических условиях на модельных растворах. Сорбенты имели удельную поверхностью 385,9 м²/г, суммарный объем пор до 1.0 м³/г, механическую прочность 220 кг/см², содержание йода 10%, содержание кислородсодержащих групп на углеродной поверхности 4.5% [8-10].

Состав модельной сточной воды приведен в таблице 1. Эксперименты по очистке сточной воды проводили в динамических условиях на адсорбционных колонках диаметром 24 мм, с высотой слоя сорбента 22-25 см, навески сорбентов были равны 56 г (НУМС-О) и 61 г (НУМС-Ј). Скорость подачи сточной воды через адсорбционную колонку устанавливалась от 1.1 до 2.2 мл/мин. Через каждую колонку было пропущено по 3.5-4.5 литров сточной воды (рН-5.5-6). Отбор проб проводили каждый час. Концентрации примесей металлов в сточной воде на входе и выходе из адсорбционной колонки определялись методом атомно-абсорбционной спектроскопии (ААС). Динамическую обменную емкость до проскока (за проскок принимали превышение ПДК по каждому металлу) ДОЕ, мг/г сорбентов НУМС-Ј и НУМС-О рассчитывали по динамическим выходных кривым (зависимостям изменения выходной концентрации металла от пропущенного объема раствора). ДОЕ = $C_{Me} V_p / m$, где C_{Me} – концентрация металла, мг/мл, V – объем, мл – пропущенной сточной воды до проскока, т – масса сорбента, г.

Таблица 1. Состав сточной воды, мг/л.

№	Ионы металлов	Сисх	Спдк
1	Fe^{2+}	10	1.0
2	Mn ²⁺	0.55	0.1
3	Cu^{2+}	0.33	0.1
4	Cr ⁶⁺	0.30	0.02
5	Zn^{2+}	0.90	0.1
6	Ni ²⁺	0.10	0.1

На рисунках 1-3 представлены зависимости выходной концентрации Fe²⁺, Mn²⁺, Ni²⁺, Cr⁶⁺, Cu²⁺, Zn²⁺ от объема пропущенной сточной воды через адсорбционную колонку (выходные кривые сорбции) для сорбентов НУМС-Ј (красная кривая) и НУМС-О (чёрная кривая). Отмечается, что сорбент НУМС-О имеет наибольшие величины динамической обменной емкости (таблица 2) и обеспечивает очистку раствора до уровня ПДК и ниже в отличии от сорбента НУМС-Ј. Наиболее наглядно это представлено кривых сорбции ионов марганца, железа, меди и хрома. Для всех металлов, за исключением алюминия, в силу его амфотерности, сорбент НУМС-О оказался наиболее эффективным сорбентом.

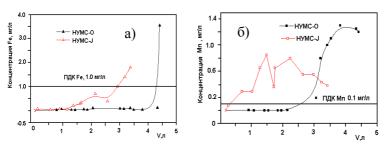


Рис. 1. Выходные кривые сорбции ионов Fe^{2+} (a) и Mn^{2+} (б).

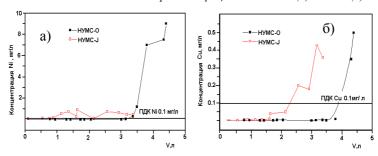
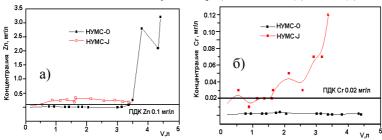



Рис. 2. Выходные кривые сорбции ионов $Ni^{2+}(a)$ и Cu^{2+} (б).

 $Puc. 3. Выходные кривые сорбции ионов <math>Zn^{2+}$ (a) и Cr^{6+} (б) УМС-J и HУМС-0

Гаолица 2. Величины оинамической ооменной емкости примесей металлов							
№	Ионы	C _{исх} .,	Скон,	$V_{\text{проп,}}$	Кол-во, мг	ДОЕ,	
	металлов	мг/л	мг/л	ΜЛ	на сорбенте	$M\Gamma/\Gamma$	
1	Fe ²⁺	10	0.02	4325	43.25	0.77	
2	Mn ²⁺	0.55	0.004	3005	1.63	0.03	
3	Zn^{2+}	0.33	0.03	3365	1.11	0.02	
4	Cu ²⁺	0.30	0.004	4325	1.3	0.02	
5	Ni ²⁺	0.90	0.02	3365	3.03	0.05	
6	Cr ⁶⁺	0.10	0.002	4405	0.44	>0.01	

Из рисунков 1-3 видно, что сорбент НУМС-0 (с кислородсодержащими группами на углеродной поверхности) имеет наибольшие величины динамической емкости (таблица 2) и обеспечивает очистку раствора до уровня ПДК и ниже в отличие от сорбента НУМС-J.

Вероятно, это объясняется медленным гидролизом солей в растворах, в частности, для Fe^{3+} полный гидролиз достигается через 5-6 месяцев и реакция гидролиза осложняется параллельными процессами гидролитической полимеризации и оксоляции. Образование малорастворимых соединений в нашем случае, вероятно, происходит одновременно с процессом хемосорбции на углеродной поверхности.

Таким образом, показано, что сорбент НУМС-О является универсальным сорбентом для доочистки растворов до уровня ПДК от примесей Fe^{2+} , Ni^{2+} , Cu^{2+} , Mn^{2+} , Cr^{5+} , вследствие образования на углеродной поверхности малорастворимых гидроксидов металлов. Сорбент НУМС-О был испытан в количестве $10~\rm kr$ в процессе очистки сточной воды Института от примесей тяжелых металлов и показал свою эффективность.

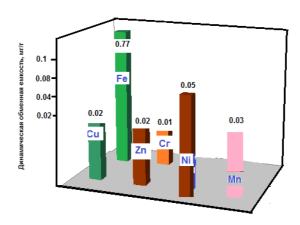


Рис. 4. Динамическая обменная емкость до проскока нанопористого окисленного углеродного сорбента (HУМС-O) по ионам Fe^{2+} , Cu^{2+} , Zn^{2+} , Ni^{2+} , Cr^{6+} и Mn^{2+} при pH раствора сорбата 5,5-6.

Список литературы

- [1]. Ibarra J, Moliner R. Удаление ионов тяжелых металлов из сточных вод с помощью сульфированного бурого угля // Fuel, 1984.
- [2]. Ludwig G., Simon J. Очистка промышленных сточных вод от тяжелых металлов с помощью фильтров с гранулированным сорбентом на основе торфа // Geol Jahrb., 1983.
- [3]. Ковалев И.А., Сорокина Н.М., Цизин Г.И. Выбор эффективного сорбента для динамического концентрирования тяжелых металлов из растворов // Вестн. Моск. ун-та. Сер. 2. Химия, 2000

- [4]. Скороходов В.И., Аникин Ю.В., Радионов Б.К. Сорбционное извлечение цветных металлов из шахтных вод // Цветные металлы, 2000.
- [5] Wei Li, Li-bo Zhang, Jin-hui Peng, et. al. // Industrial Crops and Products, 2008.
- [6]. Сагидуллин А.К., Смоляков Б.С., Левченко Л.М., Галицкий А.А., Бычков А.Л. Сорбция ионов кадмия из водных растворов на нанопористых модифицированных углеродных сорбентах // ЖПХ, 2013.
- [7]. Б. С. Смоляков, А. К. Сагидуллин, В. В. Шемякин, Л. М. Левченко, А. А. Галицкий. Модифицированные углеродные сорбенты для очистки водоемов, загрязненных токсичными металлами (Zn, Cd, Cu) // ЖПХ, 2015.
- [8]. Шавинский Б.М., Левченко Л.М., Митькин В.Н. Иодированный углеродный материал как сорбент ртути. Получение, свойства, специфика применения // Химия в интересах устойчивого развития, 2008.
- [9]. Головизина Т.С., Левченко Л.М., Митькин В.Н., Шелудякова Л.А., Керженцева В.Е. Функциональные кислородсодержащие группы на окисленной поверхности наноуглеродного материала // Журнал неорганические материалы, 2010.
- [10]. Левченко Л.М., Галицкий А.А., Сагидуллин А.К., Шемякин В.В., Шуваева О.В., Сапрыкин А.И. Экологические перспективные технологии извлечения примесей токсичных и тяжелых металлов из водных сред // Сборник материалов X Международной научно-производственной конференции, 1-2 октября 2014 г., Новосибирск.

РАЗРАБОТКА МЕТОДИКИ МС ИСП АНАЛИЗА ПРАЗЕОДИМА

¹Лундовская О.В., ^{1,2}Цыганкова А.Р., ^{1,2}Медведев Н.С. ¹ИНХ СО РАН, Новосибирск, Россия ²НГУ, Новосибирск, Россия lundovskava@niic.nsc.ru

DOI: 10.26902/UDL2020 17

В современном наукоемком производстве редкоземельные металлы (РЗМ) используют при получении ряда функциональных материалов (ФМ). Высокочистый празеодим используют в оптической и электротехнической сферах высокотехнологичного производства, а также в некоторых областях медицины. Известно, что примесный состав оказывает значительное влияние на физико-химические свойства ФМ на основе РЗМ. Разделение, очистка и анализ РЗМ являются сложными многостадийными процессами, поэтому крайне важен тщательный аналитический контроль каждой стадии получения ФМ на основе РЗМ. Масс-спектрометрия с индуктивно связанной плазмой (МС ИСП) это наиболее перспективный метод количественного химического анализа празеодима. Наряду с такими достоинствами, как многоэлементность и низкие пределы обнаружения аналитов, метод МС ИСП имеет и ограничения. В их число входят поли-