УРКАСЫМ КЫЗЫ Самара

СИНТЕЗ И ФИЗИКО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ ЛЕТУЧИХ КОМПЛЕКСОВ МЕТАЛЛОВ С МЕТОКСИ-ЗАМЕЩЕННЫМИ БЕТА-ДИКЕТОНАМИ И ГЕТЕРОМЕТАЛЛИЧЕСКИХ КОМПЛЕКСОВ НА ИХ ОСНОВЕ

02.00.01 - неорганическая химия

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук

Новосибирск - 2019

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук (ИНХ СО РАН)

Научный руководитель:

кандидат химических наук, старший научный сотрудник Крисюк Владислав Владимирович

Официальные оппоненты:

доктор химических наук, заместитель директора по науке, Третьяков Евгений Викторович ФГБУН Новосибирский институт органической химии им. Н.Н. Ворожцова СО РАН, г. Новосибирск

кандидат химических наук, старший научный сотрудник Зорина-Тихонова Екатерина Николаевна ФГБУН Институт общей и неорганической химии им. Н.С. Курнакова РАН, г. Москва

Ведущая организация:

ФГБОУ ВО «Московский государственный университет им. М.В. Ломоносова», г. Москва

Защита состоится «29» января 2020 г. в 10.00 часов на заседании диссертационного совета Д 003.051.01 в ИНХ СО РАН по адресу: просп. Акад. Лаврентьева, 3, Новосибирск, 630090

С диссертацией можно ознакомиться в библиотеке ИНХ СО РАН и на сайте организации по адресу:

http://www.niic.nsc.ru/institute/dissertatsionnyj-sovet/

Автореферат разослан «05» декабря 2019 г.

Учёный секретарь диссертационного совета доктор физико-математических наук

В.А. Надолинный

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы. Интерес к получению и исследованию свойств гетерометаллических комплексов с органическими лигандами, которые можно транспортировать через газовую фазу, в значительной степени обусловлен возможностью их применения в качестве исходных соединений для получения многокомпонентных функциональных неорганических покрытий на больших поверхностях со сложным рельефом и на трубчатых и пористых объектах методом химического осаждения из газовой фазы (Metallorganic Chemical Vapor Deposition, MOCVD). Кроме того, летучесть таких соединений позволяет также получать молекулярные тонкопленочные материалы для изучения их оптических, магнитных, сенсорных и др. свойств, не используя растворные методы. Среди гетерометаллических комплексов с органическими лигандами число летучих весьма невелико. Устойчивые на воздухе летучие гетерометаллические соединения получаются на основе β-дикетонатов и их производных. Варьирование концевых заместителей и донорных атомов в лиганде дает возможность синтезировать гетерометаллические комплексы с разнообразными структурами. Это, в свою очередь, представляет фундаментальный интерес для исследования структуры и свойств гетерометаллических комплексов в зависимости от состава и структуры исходных монометальных дикетонатов. Метокси-замещённые β-дикетонаты, имеющие донорные атомы в концевых заместителях лиганда, перспективны для получения новых гетерометаллических структур за счет дополнительной возможности связывания разных монометальных составляющих.

В соответствии с вышесказанным, актуальность синтеза и исследования летучих комплексов металлов с метокси-замещенными β-дикетонами, дизайна и исследования гетерометаллических комплексов на их основе обусловлена как фундаментальным аспектом – получением систематических данных о составе и структуре соединений, так и востребованностью в практическом плане.

Степень разработанности темы. Химия летучих комплексов на основе β-дикетонатов, содержащих метокси-группу в концевом заместителе, относительно мало исследованная область. К началу выполнения работы были описаны по 1-2 комплекса Ce(IV), Pd(II), Pt(II) и ряд комплексов Cu(II) и Ва(II), для которых приведены только данные о кристаллической структуре (за исключением комплексов Ва) и данные термогравиметрического анализа (ТГА). Наиболее изученными являются комплексы Cu(II), при этом получены только 2 гетерометаллических комплекса, содержащих метокси-замещенный дикетонат. Комплексы других металлов с метокси-замещенными дикетонатными лигандами не были известны. Систематические исследования возможности образования летучих гетероме-

таллических прекурсоров на основе таких комплексов для получения композитных пленочных материалов не проводились.

Цель работы. Синтез, исследование структуры и свойств комплексов металлов с метокси-замещенными β-дикетонатными лигандами и изучение возможности синтеза летучих гетерометаллических комплексов на их основе, а также получение тонких неорганических пленок химическим осаждением из газовой фазы. Для достижения цели были поставлены следующие **задачи**:

- 1) синтез новых комплексов Mn(II), Mn(III), Fe(III), Co(II), Ni(II), Zn(II), Pb(II), Zr(IV) с монометокси-замещенными β -дикетонатами $R^1C(O)CHC(O)R^2$, где $R^1=C(CH_3)_2OCH_3$; $R^2={}^tBu$ (L^2); $CF_3(L^3)$, и их физико-химическое исследование;
- 2) исследование взаимодействия полученных монометальных комплексов с образованием гетерометаллических комплексов; изучение состава, структуры, летучести и термической устойчивости полученных комплексов;
- 3) тестирование выбранных гетерометаллических комплексов в качестве прекурсоров для получения многокомпонентных неорганических пленок методом MOCVD.

Научная новизна работы. Впервые получены 32 новых комплекса с метокси-замещенными β-дикетонатными лигандами: 20 монометальных монометокси-замещенных комплексов Mn(II), Mn(III), Fe(III), Co(II), Ni(II), Zn(II), Pb(II), La(III), Zr(IV) и 12 гетерометаллических комплексов, содержащих комбинации металлов Cu-Pd, Pb-Co(Ni) и Cu-M, M = Pb, Ln с моно- (\mathbf{L}^1 , \mathbf{L}^2 , \mathbf{L}^3) и диметокси-замещенными бета-дикетонатными лигандами ($R^1C(O)CHC(O)R^2$, где $R^1=CR'(OCH_3)_2$, R'=H (L^4), CH_3 (L^5); R²=CF₃). Определена кристаллическая структура 20 комплексов. Показано, что использование дополнительных донорных метокси-групп в В-дикетонатном лиганде и увеличение их числа приводит к образованию гетерометаллических комплексов дискретной или цепочечной структуры. Показано, что структура и термические свойства полученных соединений зависят от числа ОСН₃-групп в лиганде. Впервые проведено количественное исследование летучести ряда полученных гетерометаллических комплексов методом потока. Синтезирован и исследован новый летучий прекурсор для получения медно-палладиевых пленок методом MOCVD.

Практическая значимость работы. В работе получена фундаментальная информация о кристаллической структуре, летучести, термических и магнитных свойствах монометальных и гетерометаллических комплексов с метокси-замещенными β-дикетонатными лигандами. Эти данные могут быть использованы как справочные при получении новых соединений и материалов на их основе. Результаты рентгеноструктурного анализа (РСА) синтезированных комплексов депонированы в Кембридж-

ской кристаллографической базе данных и являются общедоступными. Двухъядерные и трехъядерные комплексы, полученные в данной работе, исследованы как прекурсоры для получения неорганических пленок методом MOCVD. Новый Cu-Pd комплекс рекомендован для осаждения пленок медно-палладиевых сплавов.

Методология и методы диссертационного исследования. Экспериментальная часть работы включает синтез и физико-химическое исследоновых комплексов металлов метокси-замещенными В-дикетонатными лигандами, получение на их основе гетерометаллических комплексов методом сокристаллизации. Особое внимание было уделено исследованию кристаллической структуры (РСА и рентгенофазовый (РФА) анализ) и термических свойств (ТГА, сублимационный тест, анасостава газовой фазы при нагревании c помощью спектрометрической методики, определение температурной зависимости давления насыщенного пара и устойчивости при массопереносе методом потока). Исследование магнитных свойств некоторых соединений было проведено методом Фарадея. Многокомпонентные неорганические пленки получены методом MOCVD, их состав и свойства охарактеризованы методами РФА, атомно-абсорбционной (ААС) и рентгенофотоэлектронной спектроскопии (РФЭС), энергодисперсионного анализа (ЭДС), сканирующей электронной микроскопии (СЭМ).

На защиту выносятся:

- данные по синтезу и идентификации новых монометальных комплексов;
- данные по получению и идентификации Cu-M (M = Pb, Pd, Ln), Pb-Co и Pb-Ni гетерометаллических комплексов;
- данные рентгеноструктурного анализа монометальных и гетерометаллических комплексов;
- результаты исследования термических свойств полученных соединений;
- данные по осаждению и характеризации металлических Cu-Pd и композитных Pb-Ni- и Pb-Co-содержащих пленок.

Личный вклад автора. Автор принимал участие в определении цели работы и постановке задач. Соискателем выполнены анализ литературных данных по теме исследования, а также экспериментальная работа по синтезу и идентификации монометальных и гетерометаллических комплексов. Соискатель участвовал в проведении экспериментов по получению биметаллических пленок. Обсуждение полученных результатов проводились совместно с научным руководителем и соавторами.

Апробация работы. Основные результаты представлены на 5-ой Конференции по неорганической химии «5th EuChemS Inorganic Chemistry Conference (EICC-5)» (Москва, 2019), Международной научной конференции «Полифункциональные химические материалы и технологии» (Томск, 2019), XV Международной конференции студентов, аспирантов и

молодых ученых «Перспективы развития фундаментальных наук» (Томск, 2018), XXVII Международной Чугаевской конференции по координационной химии (Нижний Новгород, 2017), Четвёртом семинаре по проблемам химического осаждения из газовой фазы (Новосибирск, 2017), конкурсе-конференции молодых учёных, посвященной 60-летию ИНХ СО РАН (Новосибирск, 2017).

Публикации. По теме диссертационной работы опубликовано 7 статей, в изданиях, индексируемых в международной системе научного цитирования Web of Science, и входящих в рекомендованный ВАК РФ список, из них 4 – в рецензируемых российских журналах и 3 – в рецензируемых зарубежных журналах, и тезисы 7 докладов в трудах конференций.

Степень достоверности результатов исследований. Достоверность представленных результатов определяется высоким методическим уровнем проведения работы, надежностью использованных методик, и основывается на согласованности экспериментальных данных, полученных с помощью разных физико-химических методов. Информативность и достоверность основных результатов работы подтверждается их публикацией в рецензируемых отечественных и международных научных журналах.

Соответствие специальности 02.00.01 — **неорганическая химия.** Диссертационная работа соответствует п.п. 1, 3, 5 паспорта специальности 02.00.01 — неорганическая химия.

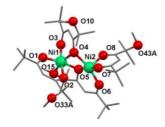
Объем и структура работы. Диссертационная работа изложена на 120 страницах, содержит 63 рисунка и 22 таблицы. Работа состоит из введения, литературного обзора (гл. 1), результатов и их обсуждения (гл. 2), экспериментальной части (гл. 3), заключения, выводов, списка цитируемой литературы (125 наименований) и приложения.

Диссертационная работа в проводилась в соответствии с планами научно-исследовательских работ ИНХ СО РАН. Часть исследований были выполнены в рамках проектов РФФИ № 15-03-06588, № 17-03-00848, № 18-53-15005.

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во введении отражена актуальность темы диссертации, сформулированы основные цели и задачи работы, описаны научная новизна, практическая значимость и методология диссертационного исследования, приведены основные положения, выносимые на защиту.

В первой главе диссертации представлен анализ имеющихся литературных данных по синтезу и исследованию структуры, физикохимических, в частности термических свойств комплексов металлов первого переходного ряда, лантаноидов, щелочных и щелочноземельных металлов с β -дикетонами. Подробно обсуждается изменение физико-


химических свойств известных в литературе комплексов при варьировании концевых заместителей в β -дикетонатном лиганде. Основное внимание уделено описанию летучих гетерометаллических комплексов, в частности с β -дикетонатами. Отмечается, что большая часть летучих гетерометаллических комплексов на основе β -дикетонатов образованы с помощью хелатных О-атомов β -дикетоната. Известны несколько работ по получению и исследованию летучих гетерометаллических комплексов с β -дикетонатами, содержащими ОСН $_3$ -группу. Показано, что метоксизамещённые β -дикетонаты перспективны для получения новых гетерометаллических структур за счет дополнительной возможности связывания разных монометальных составляющих. На основании анализа литературных данных сделан вывод об актуальности темы настоящей диссертационной работы и сформулирована цель работы.

Во второй главе представлено описание результатов и проведено их обсуждение. Глава состоит из трех частей 1) синтез и исследование свойств монометальных комплексов Mn(II), Mn(III), Fe(III), Co(II), Ni(II), Zn(II), Pb(II), Zr(IV) с метокси-замещенными β -дикетонатами; 2) получение гетерометаллических комплексов на основе синтезированных комплексов и исследование их свойств; 3) тестирование выбранных гетерометаллических комплексов в качестве прекурсоров для получения многокомпонентных неорганических пленок методом MOCVD. Структурные формулы использованных метокси-замещенных β -дикетонатных лигандов приведены на рис. 1.

Рис. 1. Структурные формулы моно- и диметокси-содержащих β-дикетонатных лигандов

1) Структура и свойства новых метокси-замещенных β-дикетонатов металлов. Комплексы 1-13 (табл. 1) синтезированы по модифицированным литературным методикам в водно-спиртовой среде в одну стадию из неорганических солей и лигандов. Разнолигандные 15-16, 23-26 и трис-β-дикетонат лантана 27 были выделены при получении гетерометаллических комплексов. Метод очистки – вакуумная сублимация в градиентной печи. 2, 4, 6, 8 – стеклообразные вещества, остальные – кристаллические. По данным РСА, 5, 7, 16 изоструктурны, они имеют димерное строение. На рис. 2 для примера показана структура Ni(L²)₂. Особенность строения: для М(1) КЧ=6 (координация четырех хелатных атомов кислорода, одного мостиково-хелатного и одного от ОСН₃-группы сосед-

него комплекса), а для M(2) KЧ=5 (нет мостиковой связи с OCH_3 -группой соседнего комплекса).

Рис. 2. Структура $5 - Ni(L^2)_2$

Координационные связи M(2)-О короче, чем M(1)-О (табл. 2). Только одна OCH_3 -группа является мостиковой, а остальные остаются свободными и не образуют мостиковых связей между димерами в кристалле. Для комплекса $Zn\ 7$ увеличенное расстояние $Zn\dots Zn\ (3.13\ Å)$ приводит к заметному искажению углов в координационных узлах.

ура 5 — N1(L⁻)₂ Таблица 1
Монометальные комплексы, полученные в работе

Комплекс	M-O, Å	M-O*, Å	O-M-O,º	MM, Å	Методы характериза- ции
$1 - Mn(L^2)_3$	-	-	-	-	СНО, РФА, МС, ТГА
$2 - Mn(L^3)_2$	-	-	-	-	СНО, РФА, МС, ТГА
$3 - \text{Fe}(L^3)_3$	-	-	-	-	СНО, РФА, МС, ТГА
$4 - Co(L^3)_2$	-	-	-	-	СНО, РФА, МС, ТГА
$5 - Ni(L^2)_2$	2.00 (Ni1) 1.97 (Ni2)	2.07 (Ni1) 2.13 (Ni2)	90.9 (Ni1) 90.9 (Ni2)	2.93	СНN, РСА, РФА, МС, ТГА,
$6 - \text{Ni}(\text{L}^3)_2$					СНО, РФА, МС, ТГА
$7 - \operatorname{Zn}(L^2)_2$	2.04 (Zn1) 1.99 (Zn2)	2.13 (Zn1) 2.13 (Zn2)	87.8 (Zn1) 89.8 (Zn2)	3.13	СНN, РСА, РФА, МС, ТГА, ¹ Н ЯМР
$8 - Zn(L^3)_2$	-	-	-	-	СНN, РФА, МС, ТГА, ¹H, ¹9F ЯМР
$9-Zr(L^2)_4$	2.19	-	73.9	11.49	СНN, РСА, РФА, МС, ТГА, ¹⁹ F ЯМР
$10 - Zr(L^3)_4$	2.18	1	74.2	9.36	СНN, РСА, РФА, МС, ТГА, ¹ Н, ¹⁹ F ЯМР
$11 - Pb(L^3)_2$	2.38	3.37	75.1	4.11	CHN, PCA, РФА, MC, ТГА, ¹ H, ¹³ C, ¹⁹ F ЯМР
$12 - [Fe(L^3)_2OEt]_2$	2.01	1.96	85.5	3.05	СНО, РСА, РФА, ТГА
$13 - [Fe(L^3)_2O^iPr]_2$	2.02	1.97	85.4	3.05	CHN, PCA, ΡΦΑ, ΤΓΑ
$15 - Cu(L^2)(dpm)$	-	-	-	-	CHN, РФА, MC,
$16 - [\operatorname{Ni}(L^2)(\mathrm{dpm})]_2$	2.00 (Ni1) 1.96 (Ni2)	2.07 (Ni1) 2.15 (Ni2)	90.8 (Ni1) 91.5 (Ni2)	2.96	СНN, РСА, РФА, МС, ТГА
$23 - Cu(hfac)(L^4)$	-	-	-	-	CHN, ¹³ C ЯМР, ТГА
$24 - Pb(hfac)(L^4)$	-	-	-	-	CHN, ¹³ C ЯМР, ТГА
$25 - [La(dpm)_2(L^2)]_2$	-	-	-	-	СНО, РФА, ТГА
$26 - [La(L^3)_2(dpm)]_2$	2.47	2.68	62.3	3.80	СНО, РСА, РФА, ТГА
27 – $[La(L^3)_3]_2$	2.47	2.67	67.1	3.80	СНN, РСА, РФА, ТГА, ¹H, ¹9F ЯМР

^{* -} мостиковые связи

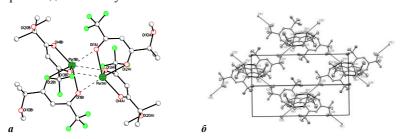
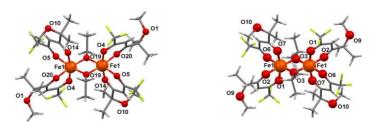
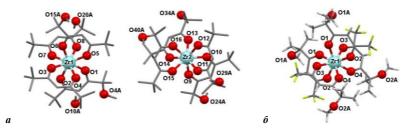

На основе анализа данных РФА и масс-спектрометрии предположено, что некристаллические комплексы $M(L^3)_2$ состоят из димерных молекул аналогично комплексам 5 и 7.

Таблица 2 Сравнение основных расстояний М-L (Å) в комплексах 5, 7 и 16

	5	7	16		5	7	16
M(1)-O(1)	1.970(3)	1.990(3)	1.973(5)	M(2)-O(7)	1.951(3)	1.964(2)	1.935(4)
M(1)-O(2)	2.014(3)	2.043(2)	2.000(4)	M(2)-O(8)	1.949(3)	1.964(3)	1.947(4)
M(1)-O(3)	2.001(3)	2.037(2)	2.010(4)	M(2)-O(5)	1.971(3)	1.980(2)	1.961(4)
M(1)-O(4)	2.024(3)	2.103(2)	2.029(3)	M(2)-O(6)	1.996(3)	2.064(2)	1.996(4)
M(1)-O(5)*	2.028(3)	2.095(2)	2.028(4)	M(2)-O(4)*	2.132(3)	2.132(2)	2.149(4)
M(1)-O(15)	2.105(3)	2.167(2)	2.120(4)	M(1)-M(2)	2.9316(6)	3.1254(5)	2.958(10)


^{* -} мостиковые связи

Комплексы Pb(II) **11** и Fe(III) **12**, **13** также являются димерами. **11** имеет непланарное строение (рис. 3а), угол между нормалями к плоскостям хелатных металлоциклов составляет 65°. Длины ковалентных Pb-O связей лежат в интервале 2.328-2.435 Å, хелатный валентный угол <O-Pb-O> 75.1°. Молекулы *цис*-Pb(L³)₂ объединены в димерные ассоциаты за счет двух мостиковых связей Pb-O(3) (2.94 Å) между соседними молекулами. Т.о., координация атома Pb в димере дополняется до (4+2) и расстояние Pb...Pb – 4.11 Å. Между соседними димерами в кристалле образуются по 4 мостиковые связи Pb-O(20) (2.935 Å), с участием ОСН₃-групп по две с каждого димера. В результате димеры упакованы в ячеистые слои вдоль плоскости (101) (рис. 3б). Вторая ОСН₃-группа с атомом О(10) не участвует в дополнительной координации и остается свободной. В итоге реализуется координация PbO₆. Расстояние от свинца до ближайших атомов фтора соседней молекулы составляет 3.307 и 3.474 Å.


Рис. 3. Молекулярная структура $\mathbf{11}$ -Pb(\mathbf{L}^3)₂ (\boldsymbol{a}) и фрагмент кристаллической структуры $\mathbf{11}$ -Pb(\mathbf{L}^3)₂, вид вдоль направления $101(\boldsymbol{\delta})$

В 12, 13 каждый атом железа связан с четырьмя О-атомами двух β -дикетонатов и образует две мостиковые связи с О-атомами двух алкоголятов (рис. 4), которые короче, чем хелатные связи. Расстояние Fe...Fe практически одинаковое – 3.05Å, табл. 1, порядка суммы атомных радиусов Fe (\sim 3.12Å). Метокси-группы β -дикетонатов лигандов остаются своболными.

Рис. 4. Структура комплексов типа $[Fe(L^3)_2OR]_2$, R = Et, ⁱPr

Комплексы циркония 9 и 10 имеют мономерное строение. В структуре 9 имеется две кристаллографически независимые молекулы, их строение с нумерацией атомов приведено на рис. 5а. Обе молекулы 9 не имеют элементов симметрии и отличаются расположением и ориентацией ОСН₃-групп. Сублимацией эти два изомера разделить не удалось. Центральный атом циркония в 9 и 10 координирует 8 О-атомов четырёх лигандов. Координационный полиэдр циркония в обоих комплексах — квадратная антипризма. Для 9 среднее значение длины связей Zr-О равно 2.186 Å, а значения хелатных валентных углов О-Zr-О лежат в интервале 73.8-74.8°. 10 имеет только один тип молекул в упаковке, рис. 5б и более короткие расстояния Zr...Zr 9.365 Å, чем в 9 (9.896–13.100 Å). В кристалле наблюдаются только ван-дер-ваальсовы взаимодействия.

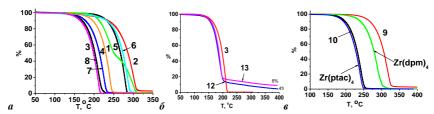


Рис. 5. Структура комплексов $9 - Zr(L^2)_4(a)$ и $10 - Zr(L^3)_4(6)$

Исследование состава газовой фазы методом масс-спектрометрии. В масс-спектрах монометальных комплексов 1, 5, 7 с нефторированным лигандом L^2 не было зарегистрировано пиков, соответствующих биядерным

частицам. Учитывая, что в кристаллическом состоянии 5 и 7 являются димерами, сделан вывод, что при нагревании происходит диссоциация и комплекс переходит в газовую фазу в виде мономеров. Для фторированных комплексов $\mathbf{2}$, $\mathbf{4}$, $\mathbf{6}$, $\mathbf{8}$ зарегистрированы пики биядерных ионов, что указывает, что эти комплексы в газовой фазе состоят из димеров. Можно полагать, что эти бис-хелатные комплексы Mn, Co, Ni, Zn с фторированным лигандом \mathbf{L}^3 имеют димерное строение и в конденсированной фазе.

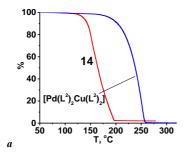
Термические свойства. Все синтезированные монометальные комплексы 1-13 переходят в газовую фазу без разложения при нагревании, что подтверждено сублимационным тестом (температура сублимации /°C/ при пониженном давлении /10⁻² Topp/: 1- 135, 2- 160, 3- 120 (испарение), 4- 130, 5- 130-135, 6- 160, 7- 130, 8- 120, 9- 200, 10- 140, 11- 130, 12, 13-130) и данными комплексного термического анализа в потоке гелия (потеря массы 92-100 %, (рис. 6). Повышенной летучестью обладают комплексы Zn и Fe, для которых температура 50 %-ной потери массы примерно на 50° ниже по сравнению с остальными (рис. 6a). Летучесть алкоголятных производных Fe 12 и 13 почти одинаковая, потеря массы >90 % (рис. 6б). Для комплексов Zr(IV) показано, что наличие терминальных ОСН₃-групп в лиганде отрицательно сказывается на летучести, тогда как введение трифторметильной группы ожидаемо ее повышает (данные ТГА, рис. бв). Масс-спектрометрическое исследование показало, что термолиз паров комплексов Zr начинается при T>250 и 270°C, максимальная степень разложения достигается при T>350 и 410° С для фторированного комплекса 10 и нефторированного 9, соответственно. Таким образом, термическая устойчивость паров комплексов Zr изменяется в ряду $Zr(dpm)_4 > 9 > 10$.

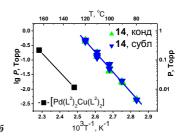
Рис. 6. Кривые ТГ комплексов **1** – Mn(L²)₃, **2** – Mn(L³)₂, **3** – Fe(L³)₃, **4** – Co(L³)₂, **5** – Ni(L²)₂, **6** – Ni(L³)₂, **7** – Zn(L²)₂, **8** – Zn(L³)₂ (\boldsymbol{a}); **3** – Fe(L³)₃ в сравнении с **12** – [Fe(L³)₂OEt]₂, **13** – [Fe(L³)₂OPr]₂ ($\boldsymbol{\theta}$); **9** – Zr(L²)₄ и **10** – Zr(L³)₄ в сравнении с Zr(dpm)₄, Zr(ptac)₄ ($\boldsymbol{\theta}$)

Магнитные свойства комплексов 1-3, **5-6** исследованы методом Фарадея. Линейный характер зависимости величины обратной магнитной восприимчивости I/χ от температуры позволил провести аппроксимацию полученных экспериментальных данных по закону Кюри-Вейса. Для комплекса **1** величина эффективного момента соответствует Mn^{3+} (4.9 μ_{β}),

для комплекса ${\bf 2}-{\rm Mn}^{2+}$ (5.9 μ_{β}). Переход от комплексов с лигандом ${\bf L}^2$ к фторированному ${\bf L}^3$ сопровождается сменой знака константы Вейса, $\theta=+6{\bf K}$ (1); -7 K (2); -16 K (4); +9 K (5); -4 K (6) с положительного на отрицательный, что соответствует смене типа взаимодействий с ферромагнитного на антиферромагнитный.

2) Гетерометаллические комплексы с метокси-замещенными β-дикетонатами, содержащие комбинации металлов Cu-Pd, M-Pb (M=Co, Ni, Cu), Cu-Ln (табл. 3), получены методом сокристаллизации. Навески соответствующих β-дикетонатов металлов растворяли в некоординирующих органических растворителях (толуол, гептан, хлороформ). Начальное соотношение компонентов было 1:1, при повторных экспериментах оно зависело от состава получаемых гетерокомплексов. При выделении и очистке использовали перекристаллизацию и вакуумную градиентную сублимацию. Выходы при образовании однофазных образцов были количественными. В качестве исходных использовали как полученные нами новые комплексы с метокси-замещенными β-дикетонатами, так и β-дикетонаты металлов, структура и свойства которых известны.


Таблица 3 Полученные в работе гетерометаллические комплексы


Комплекс	M-O, Å	M-O*, Å	O-M-O,º	Методы характери- зации
$14 - [Pd(L^3)_2Cu(hfac)_2$	1.98 (Pd) 1.93 (Cu)	2.66(Cu)	94.5 (Pd) 92.2 (Cu)	СНN, РСА, РФА, МС, ТГА, метод потока
$17 - [Pb(L^3)_2Co_2(hfac)_4]$	2.36(Pb)	2.67 (Pb)	71.0 (Pb)	СНN, РСА, РФА, МС,
	2.03(Co)	2.09 (Co)	88.0 (Co)	ТГА, метод потока
$18 - [Pb(L^3)_2Ni_2(hfac)_4]$	2.37 (Pb)	2.69 (Pb)	71.0 (Pb)	СНN, РСА, РФА,
	2.02 (Ni)	2.05 (Ni)	89.0 (Ni)	МС, ТГА
19 - [mpaнc-Cu(L3)2(Pb(hfac)2)2]	2.48 (Pb)	2.66 (Pb)	71.9 (Pb)	СНN, РСА, РФА,
	1.93 (Cu)	2.58 (Cu)	87.6 (Cu)	ТГА
$20 - [mpaнc-Cu(L^1)_2Pb(hfac)_2]_n$	2.52 (Pb)	2.76 (Pb)	71.0 (Pb)	СНN, РСА, РФА,
	1.92 (Cu)	2.77 (Cu)	93.9 (Cu)	ТГА
21 – [<i>mpaнc</i> -Cu(L ⁴) ₂ Pb(hfac) ₂]	2.46 (Pb)	2.86 (Pb)	71.9 (Pb)	СНN, РСА, РФА,
	1.92 (Cu)	2.66 (Cu)	93.5 (Cu)	ТГА
$22 - [\mu uc - Cu(L^5)_2 Pb(hfac)_2]$	2.45 (Pb)	2.83 (Pb)	71.3 (Pb)	СНN, РСА, РФА,
	1.92 (Cu)	2.67 (Cu)	92.5 (Cu)	ТГА
28 – $[(La(L^4)_2(dpm))_2Cu(dpm)_2]$	2.46 (La)	2.69 (La)	67.0 (La)	СНN, РСА, РФА,
	1.93 (Cu)	2.60 (Cu)	92.0 (Cu)	ТГА
29 – $[(Pr(L^4)_2(dpm))_2Cu(dpm)_2]$	2.43 (Pr)	2.67 (Pr)	61.0 (Pr)	СНN, РСА, РФА,
	1.93 (Cu)	2.60 (Cu)	92.0 (Cu)	ТГА
30 - $[(Sm(L^4)_2(dpm))_2Cu(dpm)_2]$		-	-	СНN, РФА, ТГА СНN, РФА, ТГА
$ \begin{array}{c} {\bf 31} - [({\rm Gd}(L^4)_2({\rm dpm}))_2{\rm Cu}({\rm dpm})_2] \\ {\bf 32} - [({\rm La}(L^5)_2({\rm dpm}))_2{\rm Cu}({\rm dpm})_2] \\ \end{array} $	-	-	-	СНК, РФА, ПТА

<u>Исследование системы Cu-Pd</u> в значительной степени определялось практической важностью: ранее полученный в нашей Лаборатории $[Pd(L^2)_2Cu(L^2)_2]$, содержащий метокси-замещенный β -дикетонатный лиганд, является перспективным прекурсором для газофазного осаждения Cu-Pd пленок [Krisyuk V.V. и др., ChemPlusChem., 80, 2015, 1457]. В рамках работы решалась задача повышения летучести биметаллического прекурсора. Были исследованы системы с F-содержащими метоксизамещенными комплексами. Установлено, в системах $Cu(L^3)_2+Pd(L^2)_2$ и $Cu(L^3)_2 + Pd(L^3)_2$ сокристаллизация не происходит. В системе $Pd(L^3)_2 + Cu(L^2)_2$ образуется твердый раствор состава $\{[Pd(L^3)_2Cu(L^2)_2] [Cu(L^2)_2]_2\}$, который при сублимации разделяется на компоненты. Полученные результаты показывают, что F-содержащие комплексы Pd - плохие доноры для комплексообразования. Поэтому в качестве второго компонента использовали более сильный акцептор – гексафторацетилацетонат Cu(II). В результате был получен гетерокомплекс 14. Основной структурный мотив – цепочки чередующихся молекул с мостиковыми связями между атомами Си и О OCH₃-групп комплекса Pd, рис. 7. Мостиковая связь Cu-O длиннее, чем хелатные связи Cu-O (~1.9Å), табл. 3, но короче, чем подобная мостиковая связь в $[Pd(L^2)_2Cu(L^2)_2]$. По данным вакуумной сублимации и ТГА, новый комплекс более летучий (90-100°C), чем $[Pd(L^2)_2Cu(L^2)_2]$ (140°C), рис. 8а. По данным масс-спектрометрии термораспад паров 14 начинается при Т~250°С. Методом потока в Не в квазиравновесных условиях определены температурные зависимости давления насыщенного пара, рис. 8б и термодинамические характеристики парообразования (табл. 5). Т.о., данные термического анализа и тензиметрии показывают, что использование F-содержащих лигандов позволяет существенно увеличить летучесть гетерометаллического комплекса

Рис. 7. Фрагмент структуры $14 - [Pd(L^3)_2Cu(hfac)_2, Cu1-O10 = 2.66 Å$

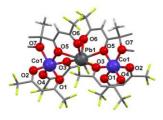


Рис. 8. Сравнение ТТ кривых (**a**) и давления насыщенного пара комплексов $14 - [Pd(L^3)_2Cu(hfac)_2 \ и [Pd(L^2)_2Cu(L^2)_2] \ (\mathbf{6})$

Исследование возможности получения гетерокомплексов сокристаллизацией новых монометокси-замешенных дикетонатов металлов между собой. В результате комбинаторного исследования проверена возможность сокристаллизации для 33 комбинаций. Для большинства систем образовались вязкие или некристаллические продукты, после сублимации – стеклообразные продукты, т.е. наличие свободных OCH_3 -групп затрудняет кристаллизацию комплексов, приводя к образованию стеклообразных продуктов. Исследование систем $Cu(dpm)_2 + Ni(L^2)_2$ и $Cu(L^2)_2 + Ni(dpm)_2$, где один из компонентов не содержит OCH_3 -групп, показало, что образования гетерометаллического комплекса не происходит, а наблюдается обмен лигандами. Продуктами сокристаллизации являются разнолигандные комплексы 15 и 16. Структура биядерного комплекса 16- $[Ni(L^2)(dpm)]_2$ аналогична гомолигандный комплекс более летучий, чем гомолиганлный.

Сокристаллизация метокси-замещенных комплексов с M(hfac)₂. На следующем этапе в качестве второго компонента при сокристаллизации были выбраны гексафторацетилацетонаты металлов, поскольку они являются сильными кислотами Льюиса, что может способствовать образованию гетерометаллических комплексов. Показано, что в системах:

Puc .9. Структура комплекса $17 - [Pb(L^3)_2Co_2(hfac)_4]$

 $Ni(L^3)_2+M(hfac)_2$, $Ni(L^2)_2+M(hfac)_2$, $Mn(L^3)_2+M(hfac)_2$, $Zn(L^3)_2+M(hfac)_2$, $Zn(L^3)_2+M(hfac)_2$, $Mn(L^2)_3+M(hfac)_2$, $Zr(L^3)_4+M(hfac)_2$ (M=Cu, Co, Ni, Pb) образуются стеклообразные или вязкие продукты. Здесь просматривается тенденция: если исходный монометальный комплекс плохо кристаллизуется, то вероятно получить такой же гетерометаллический комплекс. Поэтому было ре-

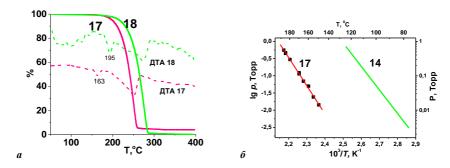

шено инвертировать комбинацию металлов и лигандов. В результате сокристаллизации гексафторацетилацетонатов переходных Co(II) и Ni(II) с метокси-замешенным β -дикетонатом Pb(II) 11- $Pb(L^3)_2$ образуются кристаллические гетерометаллические комплексы 17 и 18. По данным РФА и РСА эти комплексы изоструктурные. Кристаллическая структура комплексов молекулярная на основе трехъядерных молекул (рис. 9). Атом Рь, кроме четырех хелатных связей Рь-О, образует две мостиковые связи Pb-O с ближайшими хелатными О-атомами hfас-лиганда соседних комплексов. Атомы переходных металлов, кроме четырех хелатных связей, образуют мостиковые связи М-О с ближайшими О-атомами хелатных и ОСН₃-групп комплекса Рь, дополняя координацию до КЧ=6. Расстояние Рь...Со и Рь...Ni 3.506 Å и 3.543 Å, соответственно (табл. 4).

Таблица 4 Средние длины связей М-О (Å) и хелатные углы (°) для 17 и 18

	Pb-O _x	Pb-O _{xm}	M-O _x	М-Охм	M-O*	PbM	O-Pb-O	O-M-O
17	2.365(5)	2.667(1)	2.032(2)	2.062(3)	2.111(4)	3.506	71	88
18	2.366(7)	2.688(7)	2.016(3)	2.023(3)	2.077(4)	3.543	71	89

х – хелатные; хм – хелатно-мостиковые; * – мостиковые связи

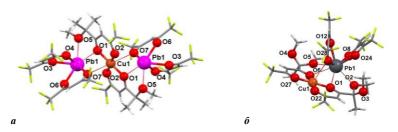
Трехъядерные комплексы 17 и 18 сублимируются без изменения состава при T=150 и 160°C, соответственно. ТГА также подтверждает, что Со-содержащий 17 более летучий, чем Ni-содержащий 18 (рис. 10а). Из рис. 10б видно, что биядерный Cu-Pd комплекс 14, имеющий одинаковый с трехъядерным Co-Pb комплексом 17 набор лигандов, более летучий, несмотря на полимерную структуру. Термодинамические параметры парообразования представлены в табл. 5.

Рис. 10. Сравнение ТГ кривых **17** – [Pb(L³)₂Co₂(hfac)₄] и **18** – [Pb(L³)₂Ni₂(hfac)₄] (a); сравнение давления насыщенного пара **17** – [Pb(L³)₂Co₂(hfac)₄] и **14** – [Pd(L³)₂Cu(hfac)₂ (a)

Температурные зависимости давления насыщенного пара и термодинамические характеристики сублимации комплексов 14 и 17

		Число ln <i>p /p</i> ($^{0}=A-B/T$	ΔH <t></t>	∆ S ° <t></t>	Темп. интервал,	
	Процесс	точек	A	В	кДж/моль	Дж/моль•К	K	
14	Сублимация	11	33.07	15922	132 ± 5	275 ± 12	353-393	
17	Сублимация	11	33.73	18841	156 ± 2	280 ± 8	422-460	

При исследовании магнитных свойств трехъядерных комплексов 17 и 18, для комплекса с Со наблюдается различный ход кривых при охлаждении и нагревании, которое указывает на фазовый переход $\Theta = +1(5)$ К (охлаждение) и +3(2)К (нагрев). Отрицательное значение $\Theta = -23(2)$ К для 18, указывает на антиферромагнитное взаимодействие между парамагнитными центрами.


Сравнение продуктов сокристаллизации на основе моно- и диметокси-замещенных дикетонатов на примере системы CuL₂+ Pb(hfac)₂.

Для выявления влияния увеличения числа OCH_3 -групп в лиганде исходного монометального комплекса на состав продуктов сокристаллизации были исследованы системы, содержащие комплексы меди(II) $Cu(L^1)_2$, $Cu(L^3)_2$, $Cu(L^4)_2$, $Cu(L^5)_2$ и $Pb(hfac)_2$ в качестве второго компонента.

При сокристаллизации эквимолярных количеств монометокси-замещенного $\mathit{mpanc}\text{-}\mathrm{Cu}(L^3)_2$ с $\mathsf{Pb}(\mathsf{hfac})_2$ образуется трехъядерный гетерокомплекс **19** (рис. 11a). Отметим, что такой же комплекс образуется и в инвертированной системе ($\mathsf{Cu}(\mathsf{hfac})_2 + \mathsf{Pb}(L^3)_2$). Дикетонат меди находится в центре гетерокомплекса и имеет $\mathit{mpanc}\text{-}\mathsf{koh}$ фигурацию. Плоскоквадратная координация атома Cu дополняется до искаженного октаздра мостиковыми контактами $\mathsf{Cu}\text{-}\mathsf{O7}$ с ближайшими хелатными O -атомами комплексов Pb . Комплекс Pb имеет типичное непланарное строение, в них центральный атом, кроме 4-х хелатных связей $\mathsf{Pb}\text{-}\mathsf{O}$, образует мостиковые связи $\mathsf{Pb}\text{-}\mathsf{O1}$ с ближайшими хелатным O -атомами и Pb - $\mathsf{O5}$ с O -атомом OCH_3 -группы дикетоната меди. Расстояние $\mathsf{Cu}\dots\mathsf{Pb}$ составляет $\mathsf{3}$.696 A .

Структурными единицами гетерокомплекса **20** являются цепочки координационных полимеров из чередующихся молекул комплексов монометокси-замещенного *транс*- $Cu(L^1)_2$ и Pb(hfac)₂. Плоскоквадратная координация атома меди дополняется до квадратнобипирамидальной мостиковыми контактами с ближайшими хелатными О-атомами комплекса Pb. Комплекс Pb имеет типичное непланарное строение, в котором центральный атом кроме 4-х хелатных связей Pb-O образует ряд мостиковых связей с ближайшими О-атомами комплекса Cu, включая OCH_3 -группы. Образованию координационного полимера, по-видимому, способствует меньший объем заместителя $-CH_3$ в полученном **20** по сравнению с - Bu в [μuc - $Cu(L^2)_2$ Pb(hfac)₂] [$Krisyuk V.V. u \partial p., J. Coord. Chem 68, 2015, 1890].$

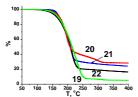

Т. о., для исследованной серии можно заключить, что для ряда лигандов HL^2 , HL^3 , HL^1 по мере уменьшения объёма заместителя $C(CH_3)_3 > CF_3 > CH_3$ степень олигомеризации получаемых гетерометаллических комплексов увеличивается в порядке [μuc - $Cu(L^2)_2$ Pb(hfac)₂] > 19 > 20.

Рис. 11. Структура гетерометаллических комплексов **19** –[mpanc-Cu(L^3)₂(Pb(hfac)₂)₂] (a) и **22** – [uuc-Cu(L^5)₂Pb(hfac)₂] (a)

Гетерометаллический комплекс **21** тоже является 1D координационным полимером из цепочек чередующихся молекул диметоксизамещенного $Cu(L^4)_2$ и $Pb(hfac)_2$. $Cu(L^4)_2$ сохраняет *транс*-конфигурацию и занимает две кристаллографически независимые позиции. Плоскоквадратная координация атома Cu дополняется до квадратнобипирамидальной мостиковыми контактами c ближайшими хелатными c0-атомами комплекса c0-c1. Комплекс c2. c3 c4. c4. c6. c7. c8. c8. c8. c8. c8. c9. c

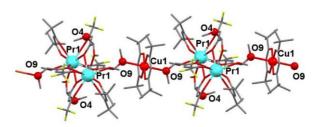
При сокристаллизации диметокси-замещенного *mpaнc*- $Cu(L^5)_2$ с Pb(hfac) $_2$ комплекс Cu изомеризуется с образованием биядерного гетерометаллического комплекса **22** (рис. 11б). В **22** координационное окружение атома Cu дополняется до квадратнопирамидальной (KЧ=5) мостиковым контактом Cu-O5 с ближайшими хелатными O-атомами комплекса

Puc. 12. Сравнение ТГ кривых
 19- [транс-Cu(L³)₂(Pb(hfac)₂)₂],
 20- [транс-Cu(L¹)₂Pb(hfac)₂],
 21- [транс-Cu(L⁴)₂Pb(hfac)₂],

22- [μuc -Cu(L^5)₂Pb(hfac)₂]

Рb. Комплекс Рb имеет типичное непланарное строение, в котором центральный атом кроме 4-х хелатных связей Рb-О образует еще 4 коротких контакта с ближайшими Оатомами комплекса Сu, включая ОСНзгруппы по одной от каждого лиганда. Расстояние Сu...Рb составляет 3.73Å. Т. о., у комплекса Сu опять в каждом лиганде по одной ОСНзгруппе остаются свободными. По данным ТГА-ДТА гетерокомплекс 19 переходит в газовую фазу

практически без разложения (нелетучий остаток около 5%), сублимируется при $T=110^{\circ}\mathrm{C}$ ($p=10^{-2}$ Торр) в виде одной зоны. Гетерокомплекс **20** имеет близкую летучесть с исходными монометальными комплексами, однако его термическая устойчивость после плавления значительно меньше: нелетучий остаток при $350^{\circ}\mathrm{C}$ составляет 28%, а для исходных комплексов <6%. **20** сублимируется при $T=120^{\circ}\mathrm{C}$ ($p=10^{-2}$ Торр) в виде одной зоны. При сублимационном тесте в тех же условиях гетерокомплекс **21** плавится. При этом наблюдалось две зоны конденсации, более летучая фаза — это разнолигандный комплекс Cu **23**, менее летучая — собственно гетерокомплекс **21**. В лодочке остается белый остаток — разнолигандный комплекс Pb **24**, который можно пересублимировать при $150^{\circ}\mathrm{C}$. **22** можно пересублимировать в вакууме в одну зону конденсации $T=120^{\circ}\mathrm{C}$ ($p=10^{-2}$ Торр). Т. о., сравнивая данные TГА для **19-22**, рис. 12, можно заключить, что термическая устойчивость гетерокомплексов уменьшается с увеличением числа $\mathrm{OCH_3}$ -групп в лиганде. Это можно объяснить формальным увеличением реакционных центров в диметокси-замещенных комплексах.


Исследование сокристаллизации метокси-замещенных дикетонатов переходных металлов с Ln(dpm)₃. Полученные нами данные показывают, что в монометальных и гетерометаллических комплексах с диметокси-замещенными лигандами одна из ОСН₃-групп остается свободной. Чтобы задействовать все ОСН₃-группы в диметокси-производных, было решено использовать при сокристаллизации в качестве второго компонента комплексы лантаноидов, центральный атом которых имеет большое КЧ. Для сравнения также исследовали сокристаллизацию с монометоксизамещенными комплексами. Установлено, что в системах с монометоксизамещенными лигандами при эквимолярном соотношении компонентов происходит обмен лигандами без образования гетерокомплексов:

$$Cu(L^2)_2 + La(dpm)_3 \rightarrow 25-[La(dpm)_2(L^2)]_2 + Cu(L^2)(dpm)$$

 $M(L^3)_2 + La(dpm)_3 \rightarrow 26-[La(L^3)_2(dpm)]_2 + Cu(dpm)_2$

В **26** все ОСН₃-группы лигандов задействованы внутри биядерного разнолигандного комплекса. КЧ лантана равно 10. Расстояние La-La в димере составляет 3.80 Å. В связи с обнаружением обмена лигандами, были исследованы системы с разным соотношением исходных комплексов: $Cu(L^3)_2 + La(dpm)_3$ 3:2 и $Cu(L^3)_2 + 26$ 1:1. При такой комбинации компонентов происходит полный обмен лигандами, и в обоих случаях образуется гомолептический комплекс **27-**La(L^3)₃. Т. о., установлено, что в лантановых системах с монометокси-замещенными лигандами образования гетерометаллических комплексов не происходит. Однако сокристаллизация в таких системах может использоваться как простой способ получения комплексов лантана с фторсодержащими дикетонами путем реак-

ции обмена лигандами. Комплексы **25**, **26**, **27** сублимируют в вакууме при температуре $\sim 200^{\circ}$ C ($p=10^{-2}$ Topp).

Сокристаллизация диметокси-производных с Ln(dpm)₃ приводит к образованию изоструктурных Cu-Ln комплексов **28-32**. Основной структурный мотив этих гетерокомплексов – 1D координационный полимер из чередующихся моноядерных комплексов Cu и биядерных разнолигандных комплексов лантаноидов, связанных донорно-акцепторными взаимодействиями между О-атомами ОСН₃-групп и атомами Cu, puc. 13.

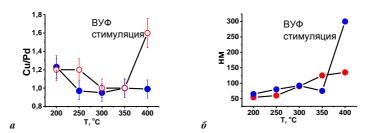


Рис. 13. Фрагмент цепочки гетерометаллического комплекса **29** – $[(Pr(L^4)_2(dpm))_2Cu(dpm)_2]$

В гетерокомплексе атом Си дополняет свое координационное окружение до КЧ= 4+2 О-атомами одной из ОСН₃-групп димерного комплекса лантаноида. Другая смежная ОСН₃-группа того же заместителя связана мостиковой связью с атомом лантаноида. Т. о., реализуется координация типа Си-О^О-Lа. Длина мостиковых связей Си-О ~ 2.6Å, табл. 3. KY(Ln)=10. Расстояние Ln....Ln в биядерном разнолигандном лантаноидном фрагменте равно ~ 3.8 Å. Однако, следует отметить, что еще пара ОСН₃-групп в лантаноидном димере остается свободной. Комплексы 28-32 нелетучие и разлагаются при нагревании в вакууме. При исследовании магнитных свойств получены отрицательные значения константы Вейса для 29 ($\Theta=-27(3)\text{K}$) и 31 ($\Theta=-25(3)\text{K}$), что указывают на антиферромагнитное упорядочение между атомами металлов в цепочке, а $\Theta=5(5)\text{K}$ для 28 указывает на ферромагнитное взаимодействие между атомами меди.

3) Тестирование выбранных гетерометаллических комплексов в качестве прекурсоров для получения многокомпонентных неорганических пленок методом химического осаждения из газовой фазы (МОСУD). Для решения этой задачи по совокупности термических свойств были выбраны гетерометаллические комплексы 14, 17 и 18. Результаты исследования полученных Сu-Pd пленок сведены в табл. 6. Установлено, что основная кристаллическая фаза пленок — это упорядоченный интерметаллид — ОЦК фаза. При термической активации соотношение металлов в пленке практически не зависит от температуры осаждения в пределах ошибки определения, оставаясь ~1:1 при 250-400°С (рис.

14а). Для сравнения для ранее исследованного прекурсора [$Pd(L^2)_2Cu(L^2)_2$] [$Krisyuk\ V.V.\ u\ \partial p.$,ChemPlusChem., 80, 2015, 1457] состав биметаллических пленок сильно зависит от T осаждения. Изучение морфологии Cu-Pd пленок, полученных из 14, методом CЭМ на кремниевых подложках, показало, что с повышением температуры осаждения увеличивается размер кристаллитов и сплошности пленки за счет слияния кристаллитов. Применение вакуумно-ультрафиолетового ($BY\Phi$) облучения подложки не имеет значительного влияния на морфологию и скорость роста пленки. Однако, при максимальной использованной температуре осаждения (400°C) при использовании $BV\Phi$ наблюдается существенный рост толщины пленки за счет пористости, рис. 146.

Рис. 14. Соотношение металлов в пленках по данным AAC (a) и график зависимости толщины пленки от температуры осаждения (δ)

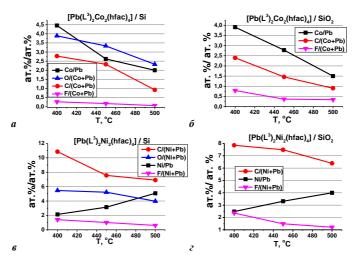

Возможно, при данных условиях происходит разложение прекурсора в газовой фазе, когда образующиеся наночастицы металла оседают на подложке, формируя пористые неплотные слои. По данным РФЭС, в пленке, полученной при 400° C с ВУФ-стимуляцией, содержание углеродных примесей составляет ~10 ат.% в толще пленки.

Таблица 6 Состав и толщина (СЭМ) полученных Сu-Pd пленок (на SiO2 подложках)

Тразлож.,	Толщина пленок, нм	РФА Pd, ат. %	Cu/Pd (ат. %/ ат. %)				
°C	без / с ВУФ	без / с ВУФ	РФА без / с ВУФ	ААС без / с ВУФ	ЭДС без / с ВУФ		
200	54/65	47/42	1.12/1.38	1.23/1.2	1.65/1.38		
250	60/80	44/45	1.27/1.22	0.97/1.20	1.27/1.37		
300	90/92	42/43	1.38/1.32	0.95/1.0	1.4/1.36		
350	125/75	42/42	1.38/1.38	1.0/1.0	1.44/1.29		
400	135/300	42/44	1.38/1.26	0.99/1.6	1.35/1.33		

Впервые были исследованы трехъядерные β -дикетонатные комплексы 17, 18 как CVD прекурсоры. По данным РФА основные кристаллические фазы пленок, полученных из 17 – CoO, Co₃O₄ и PbF₂, из 18 – NiO

и NiPbF₆. Элементный анализ пленок проведен с помощью ЭДС, чтобы выяснить основные тенденции изменения состава пленки в зависимости от T осаждения. Содержание Со по отношению к Pb падает c увеличением T осаждения независимо от материала подложки, рис. 15а- δ . На кремниевых подложках содержание углерода и кислорода падает симбатно при повышении Т осаждения. Это означает, что С и О происходят из одного источника, а именно из органической части прекурсора. Такая тенденция соблюдается для всех полученных пленок. Содержание фтора в пленках мало и монотонно падает по мере увеличения T осаждения, что можно объяснить окислением материала пленки и более эффективным удалением остатков лигандов из пленки. Фазовый состав пленок, полученных из 18, принципиально отличается от предыдущего случая. Здесь уже наблюдается образование гетерометаллических фаз. В отличие от Co/Pb системы, здесь содержание никеля в пленках увеличивается по мере увеличения T осаждения, рис. 15в-г, хотя остальные тенденции по составу аналогичные. На SiO₂ подложках никеля становится больше, что можно объяснить значительной диффузией NiO в подложку из аморфного SiO₂.

Рис. 15. Соотношение концентраций основных компонентов пленок, полученных из $17 - [Pb(L^3)_2Co_2(hfac)_4]$ и $18 - [Pb(L^3)_2Ni_2(hfac)_4]$

В третьей главе приведены перечень используемых реактивов, также описаны методики синтеза летучих монометальных и гетерометаллических комплексов с метокси-замещенными β-дикетонатными лигандами и их характеризации. Кроме того, приведены

условия осаждения и методы исследования многокомпонентных неорганических тонких пленок.

B заключении обобщены полученные результаты и указано возможное дальнейшее развитие работы.

Основные результаты и выводы

- 1. Проведено комплексное исследование ряда монометальных и гетерометаллических комплексов с метокси-замещенными дикетонатными лигандами. Получено 32 новых комплекса, в том числе 20 монометальных комплексов МL_n, n=2-4, M = Mn(II), Mn(III), Fe(III), Co(II), Ni(II), Zn(II), Pb(II), La(III), Zr(IV); и 12 гетерометаллических комплексов Сu-M, M=Pb, Pd, Ln, Pb-Co(Ni). Определена кристаллическая структура для 20 соединений.
- 2. Обнаружено, что большинство полученных монометальных комплексов с монометокси-замещенными лигандами образуют димеры в кристаллическом состоянии за счет мостиковых связей с участием атомов кислорода как хелатных, так и из метокси-групп. Соединения Mn(II), Co(II), Ni(II), Zn(II) имеют структуру на основе асимметричных биядерных молекул. Кристаллы комплексов Pb(II), La(III) образованы центросимметричными димерами. В комплексе Pb(II) димеры упакованы в слои за счет мостиковых связей с участием атомов кислорода метокси-групп. Комплексы Zr(IV) образуют кристаллы с островной структурой на основе тетракис-дикетонатных молекул, где все метокси-группы лигандов остаются свободными.
- 3. Показано, что все полученные монометальные комплексы являются летучими и сублимируются в вакууме без разложения. По данным масс-спектрометрии, биядерные комплексы переходных металлов и свинца с фторированным лигандом L^3 сублимируются в виде димеров, а с нефторированными L^2 в виде мономеров. Установлено, что в биядерных комплексах переходных металлов с нефторированным лигандом L^2 наблюдается ферромагнитное обменное взаимодействие между магнитными моментами атомов металлов, а с фторсодержащим лигандом антиферромагнитное взаимодействие.
- 4. Показано, что в летучих трехъядерных гетерометаллических комплексах состава $[Pb(L^3)_2M_2(hfac)_4]$, где M=Со или Ni, монометальные составляющие связаны мостиковыми атомами кислорода, как хелатными, так и из метокси-групп. Для Со-содержащего комплекса проведено количественное исследование летучести методом потока. При исследовании магнитных свойств этих комплексов установлено ферромагнитное обменное взаимодействие между магнитными

- моментами атомов Co, и антиферромагнитное взаимодействие между атомами Ni.
- 5. При изучении сокристаллизации метокси-замещенных комплексов меди Cu(L¹)₂, Cu(L³)₂, Cu(L⁴)₂, Cu(L⁵)₂ с гексафторацетилацетонатом свинца выявлено, что состав и структура гетерометаллических комплексов зависит от числа метокси-групп в лиганде исходного монометального комплекса. Структурный мотив образующихся Cu-Pb комплексов состава 1:1 определяется лигандом медного комплекса: увеличение объёма концевых заместителей в сочетании с наличием метокси-групп уменьшает степень олигомеризации гетерокомплексов. В структуре диметокси-производных только одна метокси-группа участвует в образовании мостиковых связей. Увеличение числа метокси-групп в лиганде медного комплекса снижает термическую устойчивость гетерометаллических комплексов.
- 6. При изучении сокристаллизации диметокси-замещенных комплексов меди $Cu(L^4)_2$, $Cu(L^5)_2$ с дипивалоилметанатами лантаноидов $Ln(dpm)_3$, Ln=La-Gd, показано, что две смежные метокси-группы в заместителе лиганда участвуют в образовании гетерометаллических комплексов состава $[(Ln(L^4)_2(dpm))_2Cu(dpm)_2]$. Эти соединения являются линейными координационными полимерами, в которых чередуются димерные гетеролигандные Ln-содержащие и медный комплексы, связанные смежными мостиковыми метокси-группами.
- 7. Синтезированные летучие гетерометаллические комплексы были протестированы как MOCVD прекурсоры. Установлено, что из комплекса $[Pd(L^3)_2Cu(hfa)_2]$ получаются медно-палладиевые пленки с постоянным соотношением металлов ~1:1 в диапазоне температур осаждения 250-400°C. Из трехъядерных комплексов $[Pb(L^3)_2M_2(hfac)_4]$ (M = Co, Ni) получаются многокомпонентные пленки CoO + PbF_2 и NiO + NiPbF₆.

Основное содержание диссертации изложено в следующих работах:

- 1. Krisyuk V.V., Baidina I.A., Turgambaeva A.E., Urkasym kyzy S., Korolkov I.V., Koretskaya T.P., Igumenov I.K. Structure and thermal properties of Pb(II) complex with functionalized β -diketonate // J. Organomet. Chem. 2016. V. 819. P. 115-119.
- 2. Крисюк В.В., Байдина И.А., Тургамбаева А.Е., Корольков И.В., Уркасым кызы С., Игуменов И.К. Новый летучий комплекс циркония(IV) с метокси-замещенным бета-дикетонатом // Журн. структур. химии. 2017. Т. 58. №4. С. 860-862.
- 3. Тургамбаева А.Е., Крисюк В.В., Байдина И.А., Корольков И.В., Ильин И.Ю., Уркасым кызы С., Игуменов И.К. Летучие комплексы циркония

- со стерически затруднёнными бета-дикетонатами: структура и термические свойства // Журн. структур. химии. 2017. Т. 85, №8. С. 1581-1588.
- Крисюк В.В., Уркасым кызы С., Байдина И.А., Романенко Г.В., Корольков И.В., Петрова Н.И., Корецкая Т.П., Тургамбаева А.Е. Структура и термические свойства гетерометаллических комплексов для газофазного осаждения Сu-Pd пленок // Журн. структур. химии. 2017. Т. 85, №8. С. 1573-1580.
- Krisyuk V.V., Urkasym kyzy S., Rybalova T.V., Baidina I.A., Korolkov I.V., Chizhov D.L., Bazhin D.N., Kudyakova Y.S. Isomerization as a tool to design volatile heterometallic complexes with methoxy-substituted β-diketonates // J. Coord. Chem. 2018. V. 71. N.14. P. 2194-2208.
- Krisyuk V.V., Turgambaeva A.E., Mirzaeva I.V., Urkasym kyzy S., Koretskaya T.P., Trubin S.V., Sysoev S.V., Shubin Y.V., Maksimovskiy E.A., Petrova N. I. MOCVD Pd-Cu alloy films from single source heterometallic precursors // Vacuum. – 2019. – V. 166. – P. 248-254.
- 7. Уркасым кызы С., Крисюк В.В., Тургамбаева А.Е., Байдина И.А., Комаров В.Ю., Коротаев Е.В., Корольков И.В. Метокси-замещенные βдикетонаты переходных металлов: синтез и свойства // Журн. структур. химии. 2019. Т. 60, №10. С. 1701-1713.

Благодарности. Автор выражает искреннюю признательность научному руководителю к.х.н. В.В. Крисюку за руководство научной работой и за поддержку, а также к.х.н. А.Е. Тургамбаевой (ИНХ СО РАН) за помощь при подготовке диссертации, д.х.н. Г.В. Романенко (МТЦ СО РАН) за внимательное рецензирование диссертации. Автор благодарит всех соавторов, коллектив лаборатории №313 ИНХ СО РАН, а также центр коллективного пользования ИНХ СО РАН.

УРКАСЫМ КЫЗЫ Самара

СИНТЕЗ И ФИЗИКО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ ЛЕТУЧИХ КОМПЛЕКСОВ МЕТАЛЛОВ С МЕТОКСИ-ЗАМЕЩЕННЫМИ БЕТА-ДИКЕТОНАМИ И ГЕТЕРОМЕТАЛЛИЧЕСКИХ КОМПЛЕКСОВ НА ИХ ОСНОВЕ

Автореферат диссертации на соискание ученой степени кандидата химических наук Изд. лиц. ИД № 04060 от 20.02.2001.

Подписано к печати и в свет 26.11.2019 Формат 60×84/16. Бумага № 1. Гарнитура "Times New Roman"

Печать офсетная. Печ. л. 1,2. Уч.-изд. л. 1,1. Тираж 120. Заказ № 244 ФГБУН Институт неорганической химии им. А.В. Николаева СО РАН. Просп. Акад. Лаврентьева, 3, Новосибирск, 630090