На правах рукописи

HEL

НОВИКОВА Евгения Дмитриевна

МАТЕРИАЛЫ НА ОСНОВЕ ДИОКСИДА КРЕМНИЯ, НАНОЧАСТИЦ ЗОЛОТА И ОКТАЭДРИЧЕСКИХ КЛАСТЕРНЫХ КОМПЛЕКСОВ МОЛИБДЕНА

1.4.1. Неорганическая химия

АВТОРЕФЕРАТ диссертации на соискание ученой степени кандидата химических наук

Новосибирск – 2022

Работа выполнена в федеральном государственном бюджетном учреждении науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук

Научный руководитель

доктор химических наук, ведущий научный сотрудник, заведующий лабораторией Шестопалов Михаил Александрович

Официальные оппоненты

доктор химических наук, доцент, ведущий научный сотрудник Луценко Ирина Александровна

ФГБУН Институт общей и неорганической химии им. Н.С. Курнакова РАН, г. Москва

кандидат химических наук, старший преподаватель кафедры органической и медицинской химии Химического института им. А.М. Бутлерова

Бочкова Ольга Дмитриевна

ФГАОУ ВО «Казанский (Приволжский) федеральный университет», г Казань

Ведущая организация

Федеральное государственное бюджетное учреждение науки Институт химии твердого тела и механохимии Сибирского отделения Российской академии наук, г. Новосибирск

Защита состоится «12» октября 2022 г. в 12.00 на заседании диссертационного совета 24.1.086.01 на базе ИНХ СО РАН по адресу: просп. Академика Лаврентьева, 3, г. Новосибирск, 630090

С диссертацией можно ознакомиться в библиотеке ИНХ СО РАН и на сайте организации по адресу: http://www.niic.nsc.ru/institute/dissertatsionnyj-sovet/

Автореферат разослан «5» июля 2022 г.

Ученый секретарь диссертационного совета доктор химических наук, доцент

А.С. Потапов

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы. Основная проблема, связанная с лечением онкологических заболеваний, — это способность опухолевых клеток вырабатывать устойчивость к химиотерапевтическим лекарственным препаратам, в результате чего в процессе терапии элиминируются не все клетки опухоли, что может приводить к рецидивам заболевания. Вторая серьезная проблема, характерная как для химио-, так и для лучевой терапии — это низкая специфичность, из-за которой зачастую повреждаются не только опухолевые, но и здоровые клетки.

Многообещающей альтернативой традиционным методам лечения выступают подходы, основанные на взаимодействии фотоактивного вещества со светом с определенной длиной волны, например, фототермическая и фотодинамическая терапия. В частности, в фотодинамической терапии (ФДТ) используются вешества, способные при возбуждении светом генерировать активные формы кислорода, разрушающие клеточные мембраны и органеллы, а в фототермической терапии (ФТТ) – наноматериалы, которые преобразовывают поглощенный свет в тепло, что приводит к гибели раковых клеток от перегрева. В отсутствие светового воздействия активные вещества, как правило, не обладают заметной токсичностью, однако, под облучением они способны вызывать локальные повреждения опухолевых клеток. В настоящее время методы фототермической и фотодинамической терапии, как правило, применяются по отдельности, поскольку активные вещества этих методов абсолютно разные по своей природе, однако, в литературе все чаще встречаются исследования, направленные на объединение нескольких фотоактивных компонентов в одном материале.

В данной работе были использованы материалы, которые объединили в себе наночастицы золота разного размера и формы для ФТТ и октаэдрические кластерные комплексы молибдена для ФДТ. Включение данных компонентов в наночастицы мезопористого диоксида кремния позволяет дополнительно сорбировать в поры цитостатический препарат и модифицировать поверхность антителами для адресной доставки наноплатформы к опухолевым клеткам. Таким образом, при доставке в клетку и последующем возбуждении светом с нужной длиной волны может быть достигнут синергетический (фотодинамический, фототермический и химиотерапевтический) эффект и, соответственно, более высокая эффективность лечения.

Степень разработанности темы исследования. Сами по себе и наночастицы золота, и октаэдрические кластерные комплексы молибдена являются давно известными и хорошо изученными классами соединений. Первые их представители были синтезированы еще в середине XIX века. Однако только в последние два десятилетия, в связи с бурным развитием нанотехнологий в целом и наномедицины, в частности, фокус внимания ученых стал смещаться с физико-химических свойств на возможное применение этих соединений. Так первая значительная работа, посвященная использованию наночастиц золота в фототермической терапии раковых опухолей, была опубликована только в 2003 году, а потенциал октаэдрических металлокластерных комплексов для фотодинамической терапии продемонстрирован в 2016 году. В последующие годы интерес к этим соединениям только возрастал, – в частности ученые выяснили, что комбинация наночастиц золота с фотосенсибилизаторами способна приводить к взаимному усилению оптических свойств обоих компонентов. До 2021 года, несмотря на рост числа публикаций, посвященных фотодинамической терапии с использованием октаэдрических кластерных комплексов молибдена, их применяли только в индивидуальном виде, а не в комбинации с другими фотоактивными веществами.

Таким образом, разработка комбинированных систем, включающих в себя октаэдрические кластерные комплексы молибдена в качестве фотосенсибилизаторов и наночастицы золота в качестве агентов для фототермической терапии, интересна как с фундаментальной, так и с практической точки зрения. При этом большой интерес представляет анализ факторов, влияющих на усиление оптических свойств обоих компонентов: расстояния металл-фотосенсибилизатор, размера и формы наночастиц, состава и количества фотосенсибилизатора и т.д. Знание этих закономерностей позволит получать материалы, демонстрирующие синергетический эффект от нескольких видов противораковой терапии и, как следствие, обеспечивать более эффективное лечение.

Цель работы заключается в получении материалов на основе диоксида кремния, наночастиц золота различного размера и формы и октаэдрических кластерных комплексов молибдена, и изучение возможности их применения для комбинированной терапии раковых опухолей. В рамках достижения данной цели решались следующие задачи:

- получение материалов на основе сферических и стержнеобразных наночастиц золота, покрытых слоем диоксида кремния, допированного кластерными комплексами молибдена с ядром {Mo₆I₈}⁴⁺;
- характеризация полученных материалов набором физико-химических методов анализа (просвечивающая электронная микроскопия, электронная спектроскопия, атомно-эмиссионная спектроскопия с индуктивно-связанной плазмой и др.);
- изучение люминесцентных свойств полученных материалов;
- оценка эффективности материалов в качестве фотосенсибилизаторов в процессе генерации синглетного кислорода;
- анализ факторов, влияющих на оптические свойства материалов в частности, расстояния металл-фотосенсибилизатор, размера и формы наночастиц, состава и количества фотосенсибилизатора и т.д., и выбор оптимальных параметров синтеза;
- модификация материалов антителами для адресной доставки в раковые клетки и включение в них цитостатического препарата;

 изучение биологических свойств комбинированной системы, таких как темновая и фотоиндуцированная цитотоксичности, а также клеточное поглощение.

Научная новизна работы. Новизна диссертационной работы обусловлена тем, что в результате ее выполнения разработаны методики получения новых фотоактивных материалов на основе наночастиц золота, диоксида кремния и октаэдрических кластерных комплексов молибдена, проведена их характеризация, а также исследована возможность биомедицинского применения.

При изучении зависимости люминесцентных и фотосенсибилизационных свойств материалов от толщины слоя диоксида кремния, количества и типа кластерного комплекса и осевого соотношения (AR) наночастиц золота показано, что с увеличением осевого соотношения плазмонных наночастиц наблюдается усиление люминесцентных и фотодинамических свойств комбинированных материалов. В результате исследования удалось получить материал, демонстрирующий значительную металл-усиленную люминесценцию/генерацию синглетного кислорода.

Данный материал на основе наностержней золота с наибольшим из исследованных осевых соотношений (AR = 4,0) был взят за основу для получения мезопористых наночастиц, которые за счет увеличения площади поверхности и количества допированного кластерного комплекса показали увеличение эффективности фотосенсибилизации процесса генерации синглетного кислорода в сравнении с непористыми частицами.

Для придания материалам дополнительных химотерапевтических свойств в их поры включался цитостатический препарат цисплатин. Было проведено исследование кинетики его включения и высвобождения при различных условиях и на основании этого сделан вывод о потенциальной способности системы к селективной активации вблизи или внутри раковых клеток.

Для обеспечения адресности доставки наночастиц была проведена модификация наноантителами C7b к рецептору HER2/neu, который гиперэкспрессируют некоторые виды опухолевых клеток. Было показано, что в процессе модификации активность наноантител незначительно снижалась, однако оставалась достаточной для использования их в биологических системах.

В ходе биологических экспериментов было установлено, что мезопористые наночастицы, содержащие в своих порах цисплатин и модифицированные наноантителами C7b, обладают высокой селективностью по отношению к раковым клеткам, характеризующимся повышенной экспрессией рецептора HER2/neu. Продемонстрирована заметная темновая и фотоиндуцированная токсичность материалов в концентрациях, которые оказались ниже ранее описанных в литературе.

Теоретическая и практическая значимость работы. Разработка методик синтеза комбинированных материалов на основе наночастиц золота, диоксида кремния и октаэдрических кластерных комплексов молибдена является важным вкладом в фундаментальные знания в области химии биоактивных неорганических соединений и материалов. Впервые было показано, что октаэдрические кластерные комплексы молибдена могут выступать в качестве компонентов материалов для комбинированной терапии раковых опухолей. Полученные результаты могут быть использованы для направленной разработки материалов, демонстрирующих усиленные люминесцентные и фотосенсибилизационные свойства, а также наносистем, предназначенных для комбинированной терапии раковых опухолей.

Методология и методы диссертационного исследования. Методология исследования включает в себя этапы получения материалов на основе кластерных комплексов молибдена $(Bu_4N)_2[\{Mo_6I_8\}L_6]$ (L = NO_3^- и $OTs^- - CH_3C_6H_4SO_3^-)$ и наночастиц золота различного размера и формы. Все материалы были получены покрытием наночастиц золота слоем диоксида кремния в присутствии кластерных комплексов молибдена. Характеризация полученных материалов проводилась на современном оборудовании при использовании общепризнанных методов, таких как электронная спектроскопия, атомноэмиссионная спектроскопия с индуктивно-связанной плазмой (АЭС-ИСП), люминесцентный анализ. Размер и морфология материалов были изучены методами просвечивающей электронной микроскопии (ПЭМ) и динамического светорассеяния (ДСР).

При проведении биологических исследований использовались раковые клетки линий МСF-7, ВТ-474, SKBR3 (клетки рака молочной железы) и Нер-2 (клетки рака гортани). Цитотоксичность материалов изучалась с использованием МТТ-теста (МТТ – 3-(4,5-диметилтиазол-2-ил)-2,5-дифенилтетразолийбромид). Визуализацию клеток проводили с использованием конфокальной лазерной сканирующей микроскопии (КЛСМ). Проникновение частиц в клетки исследовали методом атомно-эмиссионной спектроскопии с индуктивно-связанной плазмой (АЭС-ИСП). Для определения фотоиндуцированной цитотоксичности использовалась лампа с длиной волны $\lambda ≥ 400$ нм, а жизне-способность клеток после облучения определяли методом МТТ.

В ходе работы контроль достоверности результатов выполнялся проведением перекрестных анализов. Достоверность оценки цитотоксического эффекта материалов подтверждена четырьмя сходящимися данными.

Положения, выносимые на защиту:

- методы получения материалов на основе сферических и стержнеобразных наночастиц золота, покрытых слоем диоксида кремния, допированного кластерными комплексами молибдена с ядром {Mo₆I₈}⁴⁺;
- результаты исследования состава и морфологии полученных материалов;
- результаты изучения люминесцентных свойств и эффективности фотосенсибилизации процесса генерации синглетного кислорода полученными материалами, а также влияние их состава и морфологии на эти характеристики;
- результаты исследования кинетики включения и высвобождения цитостатического препарата, сорбированного в поры мезопористых материалов;

- методы модификации полученных материалов наноантителами C7b, исследование селективности полученных конъюгатов по отношению к рецептору HER2/neu;
- результаты изучения биологических свойств на перевиваемых клеточных культурах, такие как цитотоксичность, клеточное поглощение, люминесцентная визуализация внутри клетки, фотоиндуцированная цитотоксичность.

Личный вклад автора. Автор принимал участие в постановке цели и задач исследования, анализе литературных данных по теме диссертации, выполнении экспериментальных исследований и обработке полученных данных, обсуждении результатов работы и формулировке выводов. Диссертантом были лично выполнены синтезы всех указанных в экспериментальной части соединений и материалов, проведены микроскопические исследования и исследования фотофизических характеристик образцов, а также обработка данных, полученных на клеточных культурах. Подготовка статей и тезисов докладов осуществлялась совместно с научным руководителем и соавторами работ.

Апробация работы. Основные результаты работы доложены и обсуждены на конференциях российского и международного уровней: ХХІ Менделеевский съезд по общей и прикладной химии (Санкт-Петербург, Россия, 2019), V Школа-конференция молодых учёных «Неорганические соединения и функциональные материалы» ICFM-2019 (Новосибирск, Россия, 2019), XVII Международная конференция «Спектроскопия координационных соединений» (Туапсе, Россия, 2020), Международная научная конференция студентов, аспирантов и молодых учёных «Ломоносов-2022» (Москва, Россия, 2022).

Публикации. По теме диссертационной работы опубликовано 3 статьи в международных журналах, которые входят в перечень индексируемых в международной системе научного цитирования Web of Science. В материалах всероссийских и зарубежных конференций опубликованы тезисы 4 докладов.

Степень достоверности результатов исследований. Достоверность представленных результатов основывается на высоком методическом уровне проведения работы, согласованности экспериментальных и литературных данных. О признании информативности и значимости основных результатов работы мировым научным сообществом говорит их опубликование в рецензируемых журналах высокого уровня и высокая оценка на российских и международных конференциях.

Соответствие специальности 1.4.1. – Неорганическая химия. Диссертационная работа соответствует п. 1. «Фундаментальные основы получения объектов исследования неорганической химии и материалов на их основе» и п. 5. «Взаимосвязь между составом, строением и свойствами неорганических соединений. Неорганические нано-структурированные материалы» паспорта специальности 1.4.1. Неорганическая химия.

Структура и объем работы. Диссертация изложена на 162 страницах, основной текст работы содержит 71 рисунок и 10 таблиц. Работа состоит из

введения, литературного обзора, экспериментальной части, описания полученных результатов и их обсуждения, основных результатов и выводов, списка цитируемой литературы (281 наименование) и приложений на 12 страницах, в которых приведены дополнительные данные по диссертационной работе.

Диссертационная работа выполнена в федеральном государственном бюджетном учреждении науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук (ИНХ СО РАН) в соответствии с Программой фундаментальных научных исследований ИНХ СО РАН по приоритетному направлению V.44. «Фундаментальные основы химии», программа ФНИ СО РАН V.44.4. «Развитие научных основ направленного синтеза новых неорганических и координационных соединений и функциональных материалов на их основе», номер гос. регистрации: 0300-2014-0010. Кроме того, работа была выполнена в рамках проекта РНФ (18-75-10060).

ОСНОВНОЕ СОДЕРЖАНИЕ ДИССЕРТАЦИИ

Во **введении** обоснована актуальность темы, поставлена цель и определены задачи исследования, сформулированы научная новизна, практическая значимость работы и положения, выносимые на защиту.

Первая глава представляет собой обзор литературы, посвященный неорганическим соединениям и наноматериалам, которые могут выступать в качестве агентов для фототермической и фотодинамической терапии раковых опухолей. Данная глава разделена на три раздела, первый из которых посвящен агентам для фототермической терапии, а именно: углеродным наноматериалам, материалам на основе соединений переходных металлов (меди, железа и т.д.) и материалам на основе наночастиц благородных металлов (золота и серебра). Во втором разделе рассмотрены комплексы переходных металлов и материалы на их основе, которые могут быть использованы как агенты для фотодинамической терапии: фталоцианины металлов, материалы на основе органических фотосенсибилизаторов и нано-МОКП, а также координационные соединения переходных металлов (рутения, иридия, платины и т.д.). В заключительном разделе первой главы обсуждается комбинация фотодинамической и фототермической терапии. Отдельное внимание уделяется такому явлению как металл-усиленная генерация синглетного кислорода, возникающему при сближении на определенное расстояние фотосенсибилизатора и плазмонных наночастиц.

Во второй главе содержится описание использованных в ходе работы реактивов и оборудования, методик синтеза материалов, проведения экспериментов по оценке эффективности генерации синглетного кислорода, фототермических измерений, а также исследований *in vitro* для некоторых материалов.

Третья глава посвящена обсуждению полученных результатов. Она разделена на четыре раздела, каждый из которых посвящен описанию определенного типа фотоактивных материалов, представляющих собой наночастицы золота, покрытые слоем диоксида кремния, допированного кластерными комплексами с ядром $\{Mo_6I_8\}^{4+}$. В первом разделе описаны материалы на основе сферических наночастиц золота, которые используются в качестве модели для оптимизации методики синтеза. Следующий раздел посвящен исследованию материалов на основе наностержней золота с различным осевым соотношением и выбору наночастиц с наилучшими люминесцентными и фотодинамическими характеристиками. В третьем разделе описана модельная система, представляющая собой кластер-содержащие наночастицы диоксида кремния, и ее модификация наноантителами C7b для адресной доставки в раковые клетки. Наконец в заключительном разделе представлен синтез и характеризация мезопористых материалов на основе наностержней золота с осевым соотношением равным 4,0, допированных цитостатическим препаратом и модифицированных наноантителами для адресной доставки в раковые клетки, а также исследование некоторых биологических свойств полученной системы.

Материалы на основе сферических наночастиц золота

Изучение материалов данного типа описано в работе [1]. Для исследования были выбраны сферические наночастицы золота (GNPs – gold nanoparticles) диаметром ~ 100 нм, поскольку их полоса поглощения частично перекрывается с полосой эмиссии кластерных комплексов ($\lambda_{3M} \sim 700$ нм, полная ширина на половине высоты ~ 200 нм).

Схема получения комбинированных материалов GNP@SiO₂@**n**-SiO₂ представлена на рисунке 1.

Рис. 1. Схема получения материалов GNP@SiO2@n-SiO2

Сферические наночастицы золота размером 107 ± 7 нм с максимумом поглощения на 580 нм были синтезированы трехстадийным зародышевым методом. Покрытие осуществлялось в две стадии: сначала наночастицы золота были покрыты слоем чистого SiO₂, а затем тонким слоем SiO₂, допированного кластерными комплексами молибдена с ядром {Mo₆I₈}⁴⁺. Покрытие осуществлялось методом Штобера, т.е. аммиачным гидролизом тетраэтилортосиликата (ТЭОС). В качестве исходных кластерных комплексов были выбраны (Bu₄N)₂[{Mo₆I₈}L₆] (далее будет обозначаться как **n**), где L – терминальные лиганды NO₃⁻ (**1**) и OTs⁻ (**2**). Данные кластерные комплексы обладают ярко-выраженными люминесцентными свойствами, а также способны прочно связываться с диоксидом кремния путем замещения лабильных внешних лигандов. Из литературы известно, что люминесцентные и фотосенсибилизационные свойства комбинированных систем напрямую зависят от расстояния между наночастицей золота и фотосенсибилизатором (ФС). Таким образом, для получения комбинированных материалов с наилучшими оптическими свойствами необходимо определить, на каком расстоянии от наночастицы будет наблюдаться наибольшее усиление интенсивности люминесценции фотосенсибилизатора.

Варьируя количество ТЭОС в реакционной смеси, мы получили частицы с одинаковым содержанием кластерного комплекса 1 и суммарной толщиной внутреннего и внешнего слоя SiO₂ равной 9 ± 2 (GNP@SiO₂@1-SiO₂ (9)), 21 ± 2 (GNP@SiO₂@1-SiO₂ (21)) и 44 ± 3 нм (GNP@SiO₂@1-SiO₂ (44)) (рис. 2).

Рис. 2. ПЭМ-изображения GNP@SiO2@1-SiO2 с разной толщиной слоя диоксида кремния: A-9 нм; B-21 нм; C-44 нм

Для оценки влияния наночастиц золота на люминесцентные свойства комбинированных материалов в качестве образца сравнения использовались частицы чистого SiO₂ того же размера и с тем же содержанием комплекса 1, обозначенные как $SiO_2(@1-SiO_2)$, а также золотосодержащие наночастицы без внутреннего слоя SiO₂ (GNP@1-SiO₂). Интенсивность эмиссии для наночастиц без внутреннего слоя SiO₂ оказалась значительно ниже, чем для остальных образцов, что объясняется переносом энергии с возбужденных молекул ФС на наночастицу золота. Для образцов GNP@SiO2@1-SiO2 (9) и GNP@SiO2@1- SiO_2 (44) интенсивность эмиссии оказалась аналогичной $SiO_2(a)$ -SiO₂, однако, в случае $GNP(@SiO_2@1-SiO_2)$ (21) наблюдалось увеличение интенсивности в 2,2 раза в сравнении с наночастицами, не содержащими золотого ядра. Полученные результаты согласуются с литературными данными, согласно которым с увеличением расстояния между наночастицей золота и молекулами ФС наблюдается сначала повышение интенсивности эмиссии, а затем ее постепенное снижение. Поскольку наибольшее металл-индуцированное усиление люминесценции кластерного комплекса наблюдалось для образца GNP@SiO₂@1-SiO₂ (21), во всех дальнейших экспериментах будут использоваться материалы

с толщиной слоя диоксида кремния 21 нм, и эта цифра в названии образца будет опускаться.

Для определения оптимального содержания кластерного комплекса мы проанализировали серию образцов GNP@SiO₂@1^x-SiO₂, где x = 1,5; 2,3; 3; 4,5 и 7,5 мг 1 на 1 мг SiO₂. Важно отметить, что x относится не к реальному содержанию кластера в образцах, а только к его добавленному в ходе синтеза количеству.

Спектры эмиссии образцов GNP@SiO₂@1^x-SiO₂ демонстрируют общую тенденцию к повышению интенсивности эмиссии с увеличением количества кластерного комплекса. Эта тенденция особенно выражена для x = 1,5-3, а в диапазоне x = 3-7,5 интенсивность практически выходит на плато. Согласно данным электронной спектроскопии, полоса поверхностного плазмонного резонанса (ППР) материалов сохраняется вплоть до x = 4,5, а при x = 7,5 эта полоса практически полностью исчезает. Причиной данного явления может быть агрегация наночастиц в процессе покрытия внешним слоем диоксида кремния.

ПЭМ-изображения образцов подтвердили агрегацию наночастиц в образцах, содержащих большое количество кластерного комплекса (рис. 3). Вплоть до $\mathbf{x} = 3$ образовывались дискретные сферические наночастицы правильной формы. Однако уже при $\mathbf{x} = 4,5$, несмотря на сохранение полосы ППР, на ПЭМ-изображениях были обнаружены частицы размером 600–800 нм, содержащие более одного металлического ядра, а при $\mathbf{x} = 7,5$ образовывались еще более крупные частицы размером порядка 2 мкм.

Рис. 3. ПЭМ-изображения GNP@SiO₂@1^x-SiO₂ с разным содержанием кластерного комплекса: A - x = 1,5; B - x = 2,3; C - x = 3; D - x = 4,5; E - x = 7,5

Поскольку наилучшие люминесцентные свойства с сохранением сферической формы частиц наблюдались для образца GNP@SiO₂@1³-SiO₂, в дальнейших экспериментах будут использоваться материалы с $\mathbf{x} = 3$ мг **n** на 1 мг SiO₂, и эта цифра в названии образца будет опускаться.

Для изучения влияния терминальных лигандов на оптические свойства материалов оптимизированные параметры синтеза были перенесены на частицы, полученные с использованием $(Bu_4N)_2[\{Mo_6I_8\}(OTs)_6]$ (2). Согласно данным ПЭМ, размер и морфология частиц, а также количество кластерных ядер, приходящихся на одну наночастицу, не зависят от исходного кластерного комплекса. Интенсивности эмиссии коллоидных растворов оказались практически идентичны, однако форма спектра несколько менялась. Сравнение профилей эмиссии GNP@SiO₂@n-SiO₂ и SiO₂@n-SiO₂ показало, что полная ширина на половине высоты для образцов, содержащих плазмонные

наночастицы, оказалась на 13 для n=1 и 4 нм для n=2 меньше, чем для кластерсодержащих наночастиц SiO₂ (рис. 4). Это сужение спектров на длинах волн <700 нм может быть связано с частичным переносом энергии с возбужденного кластерного комплекса на наночастицы золота, имеющие в этой области полосу ППР.

Рис. 4. Сравнение нормированных спектров эмиссии GNP@SiO₂@n-SiO₂ и SiO₂@n-SiO₂, n = 1 (слева) и 2 (справа)

Для изучения фотодинамических свойств материалов использовалась хорошо известная в литературе «ловушка» на синглетный кислород 1,5-дигидроксинафталин (DHN). В качестве образца сравнения выступали частицы SiO₂@**n**-SiO₂, относительно которых рассчитывалось усиление генерации синглетного кислорода, обусловленное присутствием плазмонной НЧ (таблица 1).

Таблица 1. Наблюдаемая константа скорости конверсии DHN (k_{набл}) в присутствии GNP@SiO₂@**n**-SiO₂ и SiO₂@**n**-SiO₂ при облучении светом с длиной волны 365 нм

Образец	$k_{\text{набл.}} \times 10^2$, мин ⁻¹
GNP@SiO2@1-SiO2	1,03
GNP@SiO2@2-SiO2	1,69
SiO ₂ @1-SiO ₂	0,71
SiO_2 (2 -SiO_2)	0,72

Согласно данным из таблицы, эффективность генерации синглетного кислорода в присутствии исследованных материалов зависит как от наличия наночастиц золота, так и от природы исходного кластерного комплекса. Наблюдаемая константа скорости конверсии «ловушки» в присутствии SiO₂@n-SiO₂ оказалась в 1,5 при n = 1 и в 2,4 при n = 2 раза ниже, чем для соответствующих образцов GNP@SiO₂@n-SiO₂.

Эффективность фототермической конверсии GNP@SiO₂@n-SiO₂ и GNP@SiO₂ оценивали с использованием фемтосекундного ультрафиолетового лазера с длиной волны 400 нм и фемтосекундного инфракрасного лазера с

длиной волны 800 нм. В обоих случаях наибольшую эффективность фототермической конверсии продемонстрировал образец GNP@SiO₂@1-SiO₂. Повышение температуры его коллоидного раствора после 8 минут облучения составило 9,6 и 8,9°C соответственно.

Материалы на основе наностержней золота с различным осевым соотношением

Изучение материалов данного типа описано в работе [2]. В отличие от сферических наночастиц золота, которые способны поглощать свет в достаточно узком диапазоне ~520-620 нм, поглощение наностержней золота варьируется в гораздо более широком диапазоне, включающем как видимую, так и ближнюю ИК-область (~650-1100 нм). Данная особенность представляет большой интерес, поскольку в литературе встречаются упоминания о влиянии степени перекрывания полос поглощения наночастиц и эмиссии флуорофора на люминесцентные и фотодинамические свойства материалов на их основе. В связи с этим для исследования были выбраны три типа наностержней золота с отношением длины к ширине (осевым соотношением или AR) равным 1,5, 2,5 и 4,0 (AR-GNRs), которые синтезировались двухстадийным зародышевым методом. С увеличением AR наблюдается сдвиг максимума поглощения наностержней в длинноволновую область, таким образом, их полоса поглощения перекрывается с полосой эмиссии кластерных комплексов в различных областях спектра (рис. 5).

Рис. 5. Перекрывание (выделено зеленым) нормированной полосы ППР AR-GNR и полос эмиссии наночастиц SiO₂, допированных 1: A - AR = 1,5; B - AR = 2,5; C - AR = 4,0

Методика синтеза материалов была такой же, как и для сферических наночастиц золота – сначала покрытие слоем SiO₂, а затем тонким слоем SiO₂, допированного кластерными комплексами молибдена с ядром { $Mo_{6}I_{8}$ }⁴⁺. Размерные характеристики материалов, а также их ПЭМ-изображения представлены в таблице 2 и на рис. 6. Как видно из полученных данных, оптимальная толщина оболочки оказалась примерно одинакова для всех образцов и составляла 7-10 нм.

Образец	Длина GNR, нм	Ширина GNR, нм	AR GNR	Толщина слоя SiO ₂ , нм	Гидродинамический радиус, нм	PDI
1,5-GNR	56 ± 5	37 ± 6	1,5	7 ± 1	29,6	0,05
2,5-GNR	66 ± 5	27 ± 3	2,5	8 ± 1	28,4	0,06
4,0-GNR	52 ± 3	13 ± 1	4,0	10 ± 1	35,0	0,1

Таблица 2. Размерные характеристики образцов AR-GNR@SiO2@1-SiO2, определенные с помощью ПЭМ

Рис. 6. ПЭМ-изображения материалов на основе наностержней золота с различным осевым соотношением: A - AR = 1,5; B - AR = 2,5; C - AR = 4,0

Люминесцентные свойства были исследованы для серии образцов AR-GNR@SiO2@n-SiO2, а также для описанных ранее GNP@SiO2@n-SiO2 и SiO₂@**n**-SiO₂, при этом было установлено, что форма спектров люминесценции материалов меняется в зависимости от типа наночастиц золота (рис. 7). Образцы GNP@SiO₂@1-SiO₂ и 1,5-GNR@SiO₂@1-SiO₂ демонстрируют одинаковую тенденцию к небольшому сужению спектров на длинах волн < 700 нм без каких-либо изменений формы спектра. В случае 2,5-GNR@SiO2@1-SiO2 наблюдается увеличение полной ширины на половине высоты на 33 нм и гипсохромный сдвиг максимума эмиссии с 709 на 690 нм. Профиль эмиссии 4,0-GNR@SiO2@1-SiO2 сочетает в себе уменьшение полной ширины на половине высоты на 22 нм и еще более заметный гипсохромный сдвиг максимума эмиссии с 709 на 668 нм. Аналогичные закономерности наблюдались для образцов, содержащих кластер 2. Можно заметить, что максимумы спектров люминесценции смещаются в противоположную сторону от области перекрывания полос ППР и эмиссии материалов, что подтверждает перенос энергии с возбужденного ФС на плазмонную НЧ.

AR-GNR@SiO₂@1-SiO₂ с профилем эмиссии наночастиц диоксида кремния, не содержащих золотого ядра, SiO₂@1-SiO₂: B – AR = 1,5; C – AR = 2,5; D – AR = 4,0

Для определения фактора усиления люминесценции в присутствии плазмонных НЧ мы сравнивали абсолютные интенсивности излучения золотосодержащих материалов и наночастиц диоксида кремния без золотого ядра. Содержание кластерных ядер во всех образцах было одинаково. Фактор усиления люминесценции (EEF – emission enhancement factor) рассчитывался по формуле EEF = $\frac{I_{(H \lor @sio_2@n-sio_2)}}{I_{(sio_2@n-sio_2)}}$. Согласно данным таблицы 3, с увеличением AR наночастиц золота наблюдалось увеличение EEF вплоть до 6,7 для 4,0-GNR@SiO₂@**n**-SiO₂, причем EEF практически не зависел от природы терминальных лигандов исходного кластерного комплекса.

Таблица 3. Фактор усиления люминесценции GNP@SiO₂@**n**-SiO₂/AR-GNR@SiO₂@**n**-SiO₂ относительно SiO₂@**n**-SiO₂

Образец	Фактор усиления люминесценции		
	n = 1	n = 2	
GNP@SiO2@n-SiO2	2,2	2,2	
1,5-GNR@ SiO ₂ @ n -SiO ₂	2,5	3,2	
2,5-GNR@ SiO ₂ @ n -SiO ₂	3,6	3,8	
4,0-GNR@ SiO ₂ @ n -SiO ₂	6,7	6,7	

Фактор усиления генерации синглетного кислорода (EF – enhancement factor) определялся аналогичным образом по формуле $\text{EF} = \frac{k_{(\text{H}^{q}@sio_2@n-sio_2)}}{k_{(sio_2@n-sio_2)}}$. Способность материалов фотосенсибилизировать процесс генерации синглетного кислорода возрастала с увеличением AR наночастиц золота (аналогичная закономерность наблюдалась и для люминесцентных свойств материалов). Полученные данные суммированы в таблице 5. Хотя $k_{\text{набл}}$ для материалов, допированных комплексом **2**, оказалась несколько выше, чем для материалов, допированных комплексом **1**, EF для образцов с одинаковыми наночастицами золота практически не отличались, причем максимальный EF = 13 наблюдался для 4,0-GNR@SiO_2@1-SiO_2.

Таблица 5. Наблюдаемая константа скорости конверсии DHN (k_{набл}) и фактор усиления генерации синглетного кислорода в присутствии GNP@SiO₂@n-SiO₂/AR-GNR@SiO₂@n-SiO₂ относительно SiO₂@n-SiO₂

Образец	k _{набл} ×10 ² , мин ⁻¹		Фактор усиления генерации синглетного кислорода	
-	n = 1	n = 2	n = 1	n = 2
SiO ₂ @ n -SiO ₂	0,30	0,37	-	-
GNP@SiO2@n-SiO2	0,43	0,83	1,5	2,2
1,5-GNR@ SiO ₂ @ n -SiO ₂	1,21	1,52	4,0	4,1
2,5-GNR@ SiO ₂ @ n -SiO ₂	2,24	2,48	7,5	6,7
4,0-GNR@ SiO ₂ @ n -SiO ₂	3,89	4,47	13,0	12,0

Для оценки эффективности фототермической конверсии были выбраны материалы на основе наностержней золота с AR = 4,0, поскольку они показали наилучшие люминесцентные и фотодинамические свойства. Для облучения использовался фемтосекундный ИК-лазер с длиной волны 800 нм, который идеально соответствует максимуму полосы ППР наностержней золота. Благодаря этому, материалы на основе наностержней золота показали в два раза большую эффективность в процессах фототермической конверсии, чем материалы на основе наносфер золота. Максимальное повышение температуры для них составило 17,5°C.

Материалы на основе SiO2 и наноантител C7b

Одним из способов обеспечения адресной доставки лекарственных препаратов в злокачественные клетки является конъюгация наноносителей с антителами к специфическим онкомаркерам, например, к рецептору эпидермального фактора роста человека (рецептору HER2/neu), который гиперэкспрессируют некоторые виды опухолевых клеток: SKBR-3 и BT-474 (клетки рака молочной железы), НерG2 (клетки рака печени) и т.д.

Прежде, чем проводить модификацию золотосодержащих материалов антителами к HER2/neu, мы решили отработать методику конъюгации на модельной системе – наночастицах диоксида кремния, допированных кластерными ядрами { Mo_6I_8 }⁴⁺. Изучение материалов данного типа описано в работе [3]. Наночастицы { Mo_6I_8 }@SiO₂ были синтезированы посредством щелочного гидролиза тетраэтилортосиликата с добавлением в реакционную смесь ($Bu_4N_2[{Mo_6I_8}(NO_3)_6]$ как источника кластерных ядер { Mo_6I_8 }⁴⁺. Диаметр полученных наночастиц составил 50 нм, а количество кластерных ядер { Mo_6I_8 }⁴⁺ – 3,0 ± 0,3 мг на 1 г SiO₂.

Для конъюгации наночастиц с антителами была проведена двухстадийная модификация, схема которой представлена на рис. 8. На первом этапе поверхность наночастиц функционализировали эпоксидными группами посредством гидролиза (3-глицидилоксипропил)триметоксисилана (GPTMS). Затем по известным биологическим протоколам эпокси-{Mo₆I₈}@SiO₂ конъюгировали с наноантителами C7b, способными к специфическому взаимодействию с белком HER2/neu.

Рис. 8. А – схема получения конъюгата {Mo₆I₈}@SiO₂-C7b; В – схема взаимодействия эпокси-{Mo₆I₈}@SiO₂ со свободной аминогруппой C7b

На основании анализа спектров люминесценции водных дисперсий исходных наночастиц $\{Mo_6I_8\}@SiO_2$, эпокси- $\{Mo_6I_8\}@SiO_2$ и конъюгатов $\{Mo_6I_8\}@SiO_2$ -C7b, можно заключить, что модификация поверхности не оказывает существенного влияния на профиль эмиссии кластерного комплекса, однако, приводит к снижению интенсивности эмиссии более чем в три раза – вероятно, за счет возникновения новых путей безызлучательного распада возбужденного состояния.

Селективность конъюгатов $\{Mo_6I_8\}$ $@SiO_2$ -C7b оценивалась по отношению к двум клеточным линиям: SKBR3 – клетки рака молочной железы,

характеризующиеся повышенной экспрессией рецептора HER2/neu, и Hep-2 – клетки рака гортани с низкой экспрессией рецептора HER2/neu. Оценка проникновения и внутриклеточного распределения коньюгатов осуществлялась методом конфокальной лазерной сканирующей микроскопии (КЛСМ). Было показано, что после 5 минут инкубации в клетках линии SKBR3 наблюдается яркая красная люминесценция в околоядерном пространстве, в то время как в клетках линии Hep-2 такой люминесценции обнаружено не было, что говорит о различных скоростях проникновения наночастиц в клетки.

Мезопористые материалы на основе наностержней золота с AR = 4,0

Ранее нами были подробно изучены материалы на основе сферических и стержнеобразных наночастиц золота и показано, что с увеличением AR плазмонных наночастиц наблюдается усиление люминесцентных и фотодинамических свойств комбинированных материалов. Мы использовали наиболее хорошо показавшую себя систему 4,0-GNR@SiO₂@**n**-SiO₂ как основу для получения мезопористых материалов. Интерес к таким материалам обусловлен, прежде всего, тем, что в их поры можно включать различные цитостатические препараты, тем самым придавая им дополнительные химиотерапевтические свойства. Таким образом, становится возможным достигнуть синергетического эффекта не от двух, а от трех видов противораковой терапии: фотодинамической, фототермической и химиотерапии.

Наночастицы золота, покрытые слоем мезопористого диоксида кремния (4,0-GNR@mSiO₂), были синтезированы методом травления с предварительной защитой поверхности. Этот метод заключается в получении наностержней золота, покрытых слоем непористого диоксида кремния, и защиты их поверхности поливинилпирролидоном (ПВП) с последующим травлением гидроксидом натрия в течение 30 минут. Далее полученные частицы покрывались тонким слоем диоксида кремния, допированного комплексом 1 или 2. Схема получения мезопористых материалов представлена на рис. 9.

Рис. 9. Схема получения материалов 4,0-GNR@mSiO₂@n-SiO₂

ПЭМ-изображения наночастиц 4,0-GNR@mSiO₂@n-SiO₂ представлены на рис. 10. Видно, что после травления слой диоксида кремния утрачивает свою однородность, в нем появляются более светлые и более темные участки. Для материалов, полученных путем травления, образование регулярных пор представляется крайне маловероятным, что и подтверждается данными эксперимента.

Рис. 10. ПЭМ-изображения 4,0-GNR@mSiO₂@n-SiO₂: A - n = 1; B - n = 2

Спектры люминесценции коллоидных растворов 4,0-GNR@mSiO₂@n-SiO₂ и 4,0-GNR@SiO₂@n-SiO₂ записывались для образцов с одинаковой концентрацией золота, при этом интенсивность люминесценции 4,0-GNR@mSiO₂@n-SiO₂ оказалась в 3 раза выше, чем для их непористых аналогов, а форма спектров практически не отличалась. Такое различие связано с тем, что по данным АЭС-ИСП в мезопористые материалы включается примерно в 3 раза больше кластерного комплекса, чем в непористые.

Для количественного определения синглетного кислорода также использовались коллоидные растворы 4,0-GNR@mSiO₂@**n**-SiO₂ и 4,0-GNR@SiO₂@**n**-SiO₂ с одинаковой концентрацией золота. При этом наблюдаемая константа скорости реакции разложения «ловушки» в присутствии мезопористых материалов увеличилась в 1,5 раз при **n** = **1** и в 1,9 раз при **n** = **2** по сравнению с соответствующими непористыми материалами. Таким образом, еще одним преимуществом мезопористых материалов оказалась большая эффективность в процессах генерации синглетного кислорода.

Для придания комбинированной системе дополнительных химиотерапевтических свойств был использован известный противоопухолевый препарат цисплатин (cis), действие которого основано на способности образовывать сильные ковалентные связи с ДНК, тем самым препятствуя ее точной репликации. Все дальнейшие эксперименты проводились на материалах, продемонстрировавших наилучшие люминесцентные и фотодинамические свойства – т.е. 4,0-GNR@mSiO₂@2-SiO₂.

Для проведения сорбции к водному раствору гидролизованного цисплатина приливали коллоидный раствор мезопористых наночастиц и перемешивали в течение 5 дней. Полученные материалы обозначались как 4,0-GNR@mSiO₂@**2**-SiO₂@cis.

Поскольку взаимодействие цисплатина с диоксидом кремния может осуществляться путем образования ковалентных связей между OH-группами SiO₂ и молекулой воды, на которую замещается один из атомов хлора в cis, мы предположили, что цисплатин способен связываться и с непористыми материалами. Для подтверждения этой гипотезы мы проанализировали зависимость доли сорбированного cis от времени проведения сорбции для 4,0-GNR@mSiO₂@**2**-SiO₂ и 4,0-GNR@SiO₂@**2**-SiO₂. Так было обнаружено, что по истечении 5 дней в мезопористые наночастицы включается в 3,5 раза больше цитостатического препарата, чем в непористые.

Исследование кинетики высвобождения цисплатина мы начали с проведения экспериментов в дистиллированной воде. По данным АЭС-ИСП по истечении 48 часов в дистиллированной воде не было обнаружено следов платины, что свидетельствует о достаточно прочном связывании цитостатического препарата. Поскольку опухолевые клетки характеризуются более низким значением pH, чем здоровые ткани, мы решили исследовать зависимость скорости высвобождения цисплатина от pH. В качестве среды были выбраны фосфатные буферные растворы с pH = 5,0, 6,0 и 7,0. Как и ожидалось, при снижении pH наблюдалось увеличение константы скорости высвобождения цисплатина, вероятнее всего, связанное с кислотным гидролизом ковалентных связей Si-O-Pt (таблица 6). Таким образом, было показано, что наша система обладает потенциальной способностью к селективной активации вблизи или внутри раковых клеток.

Таблица 6. Константа скорости высвобождения цисплатина из 4,0-GNR@mSiO₂@**2**-SiO₂@cis при различных значениях pH

pН	k×10², ч⁻¹
5,0	1,82
6,0	0,95
7,0	0,64

Далее мы исследовали зависимость концентрации свободного цисплатина от температуры, проведя эксперимент в фосфатном буферного растворе (pH = 5,0) при 37°С. Как и ожидалось, повышение температуры способствовало ускорению высвобождения цитостатического препарата: константа скорости высвобождения цисплатина увеличивалась с $1,82 \times 10^{-2}$ ч⁻¹ до $3,09 \times 10^{-1}$ ч⁻¹. Заключительным этапом наших экспериментов стало исследование кинетики высвобождения цисплатина в питательной среде (pH = 7,0–7,6), содержащей неорганические соли, аминокислоты, витамины и прочие вещества, входящие в состав биологических жидкостей. Константа скорости высвобождения цисплатина в питательной среде оказалась равной $1,11 \times 10^{-1}$ ч⁻¹, что в 17 раз превышает аналогичную константу для фосфатного буферного раствора с pH = 7,0.

Ранее мы изучили модельную систему $\{Mo_6I_8\}$ @SiO₂-C7b, предназначенную для адресной доставки фотосенсибилизатора в раковые клетки, отличающиеся повышенной экспрессией рецептора HER2/neu. Далее мы перенесли методику конъюгации наноантител на золотосодержащие материалы 4,0-GNR @mSiO₂ @2-SiO₂. Схема конъюгации представлена на рис. 11.

Рис. 11. Схема получения конъюгатов 4.0-GNR@mSiO2@n-SiO2-C7b

Для оценки активности антител после конъюгации использовался метод твердофазного иммуноферментного анализа. Конъюгаты сравнивались со свободными антителами в той же концентрации, и было показано, что в процессе конъюгации активность антител снижается на 20%.

Для проведения биологических исследований мы выбрали комбинированную систему, сочетающую в себе наностержни золота с AR = 4,0, мезопористый диоксид кремния, допированный кластерными ядрами { Mo_6I_8 }⁴⁺, противоопухолевый препарат цисплатин, а также наноантитела C7b. Полученный материал обозначался как 4.0-GNR@mSiO₂@**2**-SiO₂@cis-C7b. В качестве образцов сравнения выступали наночастицы 4.0-GNR@mSiO₂@**2**-SiO₂ и 4.0-GNR@mSiO₂@**2**-SiO₂@cis. Биологические свойства исследовались на клеточной линии BT-474 – клетки рака молочной железы, характеризующиеся повышенной экспрессией рецептора HER2/neu.

Оценка цитотоксичности образцов проводилась с помощью стандартного МТТ-теста. Было показано, что после 48 часов инкубации образцы 4.0-GNR@mSiO₂@**2**-SiO₂ и 4.0-GNR@mSiO₂@**2**-SiO₂@cis характеризуются низкой токсичностью в диапазоне концентраций 0,15-9,63 мкг_{Au}/мл, в то время как образец 4.0-GNR@mSiO₂@**2**-SiO₂@cis-C7b гораздо более токсичен. Такое заметное различие, вероятно, связано с модификацией поверхности наноантителами C7b, которые повышают количество наночастиц, проникших внутрь клеток. Кроме того, в концентрациях выше 9,63 мкг_{Au}/мл наночастицы, содержащие цисплатин, демонстрируют несколько бо́льшую токсичность, которая, вероятно, объясняется высвобождением сорбированного в порах цитостатического препарата.

Селективность наночастиц 4.0-GNR@mSiO₂@2-SiO₂@cis-C7b оценивалась по отношению к двум клеточным линиям: BT-474 и MCF-7 – клетки рака молочной железы с низкой экспрессией рецептора HER2/neu. Содержание золота в клетках оценивалось методом АЭС-ИСП. Как и ожидалось, модификация наноантителами C7b увеличивала скорость проникновения наночастиц в клетки, причем для клеток линии BT-474, отличающихся повышенной экспрессией рецепторов HER2/neu, этот эффект был более заметен, чем для клеток линии MCF-7. За 60 минут инкубации в клетках линии BT-474 накапливалось в 2 раза больше наночастиц, чем в клетках линии MCF-7, что подтверждает специфическое сродство наночастиц, модифицированных наноантителами C7b, к рецептору HER2/neu.

Для оценки фотоиндуцированной токсичности наночастицы 4.0-GNR@mSiO₂@2-SiO₂@cis-C7b были взяты в нетоксичной концентрации 1,2 мкг_{Au}/мл. После 30 минут облучения лампой белого света с длиной волны 400-800 нм наблюдалась гибель 32% раковых клеток, в то время как без облучения погибло лишь 10% клеток. Отдельно стоит отметить, что если сравнивать полученные результаты с ранее описанными в литературе для подобных систем, можно заметить, что в нашей работе клеточная гибель порядка 30-40% достигалась с использованием заметно более низкой концентрации наночастиц.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. Разработаны методики и оптимизированы условия получения материалов, представляющих собой наночастицы золота различного размера и формы, покрытые слоем непористого или мезопористого диоксида кремния, допированного кластерными комплексами молибдена с ядром {Mo₆I₈}⁴⁺.

2. Продемонстрировано, что с увеличением осевого соотношения плазмонных наночастиц наблюдается усиление люминесцентных и фотодинамических свойств комбинированных материалов. Для материалов на основе наностержней золота с отношением длины к ширине (AR) = 4,0 интенсивность люминесценции увеличивалась в 6,7 раз в сравнении с кластер-содержащими

наночастицами SiO₂ без металлического ядра, а эффективность фотосенсибилизации процесса генерации синглетного кислорода – в 13 раз.

3. Показано, что за счет увеличения площади поверхности и количества допированного кластерного комплекса мезопористые материалы демонстрируют лучшие люминесцентные и фотодинамические характеристики в сравнении с непористыми. При переходе от непористых материалов к мезопористым интенсивность эмиссии увеличивается в 3 раза, а эффективность фотосенсибилизации процесса генерации синглетного кислорода – в 1,5-1,9 раз.

4. Для мезопористых материалов на основе наностержней золота с отношением длины к ширине (AR) = 4,0 исследована кинетика включения и высвобождения противоопухолевого препарата цисплатина. Показано, что высвобождение цисплатина носит pH-зависимый характер: при снижении pH наблюдается увеличение константы скорости высвобождения цисплатина.

5. Продемонстрировано, что модельная система, представляющая собой кластер-содержащие наночастицы диоксида кремния, может быть модифицирована наноантителами C7b к рецептору HER2/neu. Полученные конъюгаты демонстрируют высокую селективность по отношению к опухолевым клеткам, отличающимся повышенной экспрессией данного белка. Далее методика модификации была перенесена на мезопористые материалы. Показано, что в процессе модификации снижение активности антител составляет порядка 20%, при этом форма и размер наночастиц не искажаются.

6. Показано, что комбинированные материалы, модифицированные наноантителами C7b, демонстрируют высокую селективность по отношению к раковым клеткам, гиперэкспрессирующим рецептор HER2/neu. Исследованные наночастицы проявляют заметную фотоиндуцированную цитотоксичность в концентрациях ниже ранее описанных в литературе.

Основное содержание диссертации изложено в следующих работах:

1. Novikova E.D., Vorotnikov Y.A., Nikolaev N.A., Tsygankova A.R., Efremova O.A., Shestopalov M.A. Synergetic effect of Mo6 clusters and gold nanoparticles on photophysical properties of both components // Chem. Eur. J. – 2021. – V. 27. – N. 8. – P. 2818-2825.

2. Novikova E.D., Vorotnikov Y.A., Nikolaev N.A., Tsygankova A.R., Shestopalov M.A., Efremova O.A. The role of gold nanoparticles' aspect ratio in plasmon-enhanced luminescence and the singlet oxygen generation rate of Mo6 clusters // Chem. Commun. -2021. - V. 57. - P. 7770-7773.

3. Vorotnikov Y.A., Novikova E.D., Solovieva A.O., Shanshin D.V., Tsygankova A.R., D. Shcherbakov D.N., Efremova O.A., Shestopalov M.A. Single-domain antibody C7b for address delivery of nanoparticles to HER2-positive cancers // Nanoscale. -2020. - V. 12. - P. 21885-21894.

Благодарности

Автор выражает искреннюю благодарность научному руководителю д.х.н. Шестопалову Михаилу Александровичу за помощь в постановке цели и задач при выполнении работы и обсуждении полученных результатов, Центрам коллективного пользования ИНХ СО РАН, ИЦиГ и ИАиЭ СО РАН за проведение экспериментов по характеризации материалов на основе наночастиц золота и кластерных комплексов молибдена. Коллегам из ИНХ СО РАН к.х.н. Цыганковой Альфие Рафаэльевне и к.х.н. Гусельниковой Татьяне Яковлевне за проведение элементного анализа АЭС-ИСП, к.т.н. Николаеву Назару Александровичу (ИАиЭ СО РАН) за помощь в изучении фототермических свойств материалов, Шаньшину Даниилу Васильевичу (ФБУН ГНЦ ВБ «Вектор») за получение наноантител С7b и проведение экспериментов по определению активности их конъюгатов с материалами, Позмоговой Татьяне Николаевне (ИНХ СО PAH) за проведение биологических исследований. Также автор благодарит к.х.н. Воротникова Юрия Андреевича (ИНХ СО РАН) за неоценимую помощь в обсуждении результатов и поддержку на всех этапах выполнения работы.

НОВИКОВА Евгения Дмитриевна

МАТЕРИАЛЫ НА ОСНОВЕ ДИОКСИДА КРЕМНИЯ, НАНОЧАСТИЦ ЗОЛОТА И ОКТАЭДРИЧЕСКИХ КЛАСТЕРНЫХ КОМПЛЕКСОВ МОЛИБДЕНА

Автореферат диссертации на соискание ученой степени кандидата химических наук Изд. лиц. ИД № 04060 от 20.02.2001. Подписано к печати и в свет 22.06.2022. Формат 60×84/16. Бумага № 1. Гарнитура "Times New Roman" Печать оперативная. Печ. л. 1,2. Уч.-изд. л. 1,1. Тираж 100. Заказ № 97 Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева СО РАН

Просп. Акад. Лаврентьева, 3, Новосибирск, 630090