Разработки сотрудников ИНХ СО РАН - в репортаже Вести Новосибирск. "Победить рак пытаются Новосибирские учёные при поддержке Росийского научного фонда, они на основе платиновых металлов - иридия и палладия - разработали вещества, способные убивать клетки опухоли".

Вести Новосибирск, 01.08.2023

Иридий, как и палладий, платина, золото - вещества благородные. Редкие. Дорогие. Учёные давно доказали - в соединении с другими веществами они, как рыцари, способны сражаться с самыми коварными онкологическими болезнями. Но после такого лечения нужна сложная реабилитация - лечение влияет и на здоровые клетки организма. Задача учёных - минимизировать такие последствия. Они экспериментируют, смешивая благородные металлы с другими веществами. Смеси называют легандами.

«Поскольку эта область изначально в качестве лекарственных препаратов именно с диаминовым соединением остаётся востребованной. И введение таких новых легандов, как наши диаминовые леганды, способно продвинуть эту область вперед, поскольку практически таких исследований не было», - рассказывает младший научный сотрудник Института неорганической химии СО РАН Николай Ромашев.

Благородные металлы в паре со специфическими азотосодержащими молекулами молниеносно вступают в окислительно-восстановительные реакции. Образуются активные свободные радикалы, частицы. Они-то и способны разрушать раковые клетки. Новосибирские учёные создали такие гибриды на основе иридия, палладия.

«Они способны взаимодействовать с молекулами ДНК, входить в их структуру. Что приводит к нарушению их функций. Это один из механизмов, а второй механизм действия - это генерация активных форм кислорода, которые и дальше будут усиливать окислительный стресс, который приведёт к гибели раковой клетки», - рассказывает заведующий лабораторией Института неорганической химии СО РАН Артём Гущин.

Теперь учёным предстоит изучить, как вещество взаимодействует не только с раковыми клетками, но и с живыми. На первых экспериментах соединения уже зарекомендовали себя положительно.

Теперь учёным предстоит подтвердить работу двойного механизма действия соединений иридия в организме человека. Но пока исследования будут проходить только на клеточном уровне. Кстати, химики уже подтвердили - гибель раковых клеток происходит и после их взаимодействия с другими соединениями на основе палладия. А это значит, гибель раковых клеток возможна и после их взаимодействия с соединениями иридия.

 АНАСТАСИЯ ПУТИНЦЕВА, Вести Новосибирск

В журнале Chemical Communications (IF = 4,9) опубликована статья сотрудников Института Демакова П.А., Дыбцева Д.Н. и Федина В.П.

  1. "Diastereoselective guest-shape dependent [2+2]-photodimerization of 2-cyclopenten-1-one trapped within a metal-organic framework", Demakov P.A., Dybtsev D.N., Fedin V.P. // Chemical Communications, 2023, 59, 9380 - 9383. DOI: 10.1039/D3CC02162A Посмотреть статью 

Позиции двух молекул 2-метил-2-циклопентен-1-она до облучения (слева) и его димера (диастереомер вида «анти- голова-к-хвосту», справа) после облучения. Позиции гостевых молекул и ориентация реагента стабилизированы в апертуре каркаса-хозяина водородными связями CHttdc…Oкетон (оранжевая пунктирная линия). Данные РСА монокристаллов.

Ученые из Института неорганической химии имени А. В. Николаева (Новосибирск) синтезировали три новых комплекса на основе иридия и азотсодержащих ароматических органических молекул. Полученные соединения обладают ярко выраженной окислительно-восстановительной активностью. Это свойство в перспективе можно использовать для генерации активных форм кислорода для уничтожения опухолевых клеток.

О разработаках сотрудников Института ─ в новостях РНФ.

Кроме того, одно из полученных соединений оказалось способно высвобождать оксид азота(II) — биологически активную молекулу, которая также участвует в разрушении клеточных структур. Благодаря этому полученные комплексы потенциально можно будет использовать в противораковой терапии. Результаты исследования, поддержанного грантом РНФ, опубликованы в журнале International Journal of Molecular Sciences (2023, 24, 13, 10457. "Iridium Complexes with BIAN-Type Ligands: Synthesis, Structure and Redox Chemistry").

Комплексные соединения, состоящие из металлов и органических молекул, называемых лигандами, часто используются в качестве катализаторов — веществ, ускоряющих химические реакции. Дело в том, что металл в составе комплексов может отдавать или принимать электроны от других соединений. Это активирует вступающие в реакцию молекулы и позволяет синтезировать из них нужные для химии и фармацевтики продукты. Чтобы комплексное соединение могло взаимодействовать с разнообразными молекулами, то есть проявляло высокую активность, оно должно обладать окислительно-восстановительными способностями в широком диапазоне, то есть «уметь» отдавать и/или принимать большое количество электронов.

С этой точки зрения в качестве катализаторов и биологически активных соединений перспективны комплексы на основе металлов и бис(имино)аценафтенов — азотсодержащих ароматических молекул, обладающих окислительно-восстановительной активностью. Такие органические молекулы способны обратимо принимать до четырех электронов, а потому легко вступают в различные химические превращения. Благодаря этому подобные комплексы потенциально можно использовать не только в катализе, но и в бионеорганической химии, например, для генерации активных форм кислорода с целью уничтожения опухолевых клеток, однако до сих пор их свойства остаются недостаточно изученными.

Ученые из Института неорганической химии имени А. В. Николаева (Новосибирск) синтезировали три новых комплекса иридия с бис(имино)аценафтеном. Иридий представляет собой редкий металл, который, как и его органический «партнер», может находиться в разных окислительно-восстановительных состояниях. Чтобы получить первый комплекс, авторы взяли за основу коммерчески доступное хлорсодержащее соединение иридия и при нагревании смешали его с раствором бис(имино)аценафтена. В результате получили кристаллическое вещество, которое извлекли из раствора выпариванием. Второй и третий комплексы синтезировали на основе первого, добавив к нему азот- и фторсодержащие реагенты.

Затем авторы исследовали строение полученных молекул с помощью рентгеноструктурного анализа. Этот метод позволяет определить взаимное расположение атомов в веществе по тому, как оно рассеивает рентгеновские лучи. Анализ показал, что в каждом из комплексов атом иридия соединяется только с одной молекулой бис(имино)аценафтена. Остальное пространство вокруг иридия занимают вспомогательные лиганды. При этом наиболее необычное строение имел второй комплекс, содержащий молекулу оксида азота(II), расположенную по отношению к иридию «изогнутым» способом. Особенностью этого соединения является его неустойчивость, поскольку оксид азота легко отделяется от остальной части комплекса.

Оксид азота(II) известен своей биологической активностью: он участвует во многих биохимических реакциях в клетке, в частности, способен вступать в реакции с белками, приводя к нарушению их функции. В связи с этим оксид азота, образующийся при распаде полученного авторами комплекса, может потенциально использоваться для борьбы с раком.

«Мы планируем исследовать биологическую активность как уже полученных, так и вновь синтезированных комплексов иридия с бис(имино)аценафтенами на раковых клетках, поскольку такие окислительно-восстановительные системы, по нашему мнению, перспективны для их уничтожения. Если на клеточных культурах эксперименты пройдут успешно, мы сможем продолжить их на мышах», — рассказывает ведущий исполнитель проекта, поддержанного грантом РНФ, Артем Гущин, доктор химических наук, заведующий лабораторией химии комплексных соединений, главный научный сотрудник ИНХ СО РАН.

Пресс-служба РНФ
 
Новость в других источниках:
 
Сайт РАН, 24.07.2023 Соединения на основе иридия смогут стать противораковыми агентами 
CoLab, 24.07.2023 Новые комплексы иридия предлагается использовать для лечения рака
 

О разработаках сотрудников ИНХ СО РАН ─ в репортаже телеканала Вести Новосибирск. "Ученые изобрели вещества, которые смогут самостоятельно разделять природный газ на компоненты. Исследователи уверены, это удешевит процесс очистки природного газа."

Вести Новосибирск, 19.07.2023

В июле 2024 года тарифы на газ вырастут на восемь процентов, заявили в антимонопольной службе, тем временем новосибирские ученые предлагают сделать газ дешевле.

Природный газ ─ вещество многокомпонентное с преобладанием метана. Его используют в быту, на производстве, для заправки автомобилей. Очищают и производят голубое топливо на гигантских заводах с помощью низких температур. Процесс дорогостоящий. Сибиряки придумали, как его значительно удешевить.

«Мы изобрели сорбент для разделения легких углеродов – компонентов природного газа. Мезопористый каркас с крупными ячейками и узкими проходами, которые позволяют регулировать абсорбцию газа. Мы назвали сорбенты "NIIС-20" по имени нашего института», ─ рассказал заместитель директора по научной работе Института неорганической химии им. А. В. Николаева СО РАН Данил Дыбцев. 

Пористые кристаллы как губка фильтруют голубое топливо. Сорбент засыпают в специальную установку и через него прогоняют природный газ. 

«На микроуровне происходит заход газа, паров и других соединений. Какие-то из них хорошо удерживаются внутри, некоторые ─ хуже, и за счет этого происходит разделение», ─ пояснил старший научный сотрудник Института неорганической химии им. А. В. Николаева СО РАН Денис Самсоненко.

Порошок не только задерживает примеси, но и очищает полезное ископаемое. По трубам из установки выходят метан, бутан и пропан. Полимер можно использовать несколько раз, очищая после применения. Сибирские химики уверяют, технология позволяет экономить электроэнергию и время. Предлагаемый вариант ─ самый дешевый в мире. 

Для синтеза вещества необходимо построить мощное производство, и только потом можно передавать технологию для переработки газа.

Анастасия Путинцева

 

Новость в других источниках:

Дзен, 19.07.2023