Сотрудники Института неорганической химии им. А. В. Николаева СО РАН уже несколько лет ведут исследования по совершенствованию и разработке методик получения чернил для печатной электроники. Результаты работ позволят производить большее количество наночастиц, сохраняя их высокую стабильность.
 
Российский научный фонд (17.05.2021)
Новости Сибирской науки
 (17.05.2021)
 
Область печатной электроники на сегодняшний день является одним из перспективных направлений научных исследований. Она связана с производством электронных устройств при помощи специальных чернил. Такой подход к созданию плат, микросхем и прочих элементов современной техники намного проще и дешевле ныне используемых, но массово его пока не применяют. Главное препятствие состоит в получении чернил. Синтезировать необходимое количество вещества можно, однако срок его хранения будет ничтожно мал. Способы получения стабильных чернил намного сложнее и требуют больше времени. К примеру, на выпуск бутылька с жидкостью объемом 50 мл компаниям, занимающимся ее производством, требуется около недели.
 
«В печатной электронике необходимо использовать именно наночернила, ведь если частицы металла, из которых чернила состоят примерно наполовину, будут слишком крупными, то они попросту забьют сердце принтера — его печатающую головку. Обычно мы работаем с частицами размером менее десяти нанометров», — отмечает старший научный сотрудник ИНХ СО РАН кандидат химических наук Павел Сергеевич Поповецкий. Чаще всего используется серебро, так как оно является лучшим проводником среди металлов, или золото, кроме того, чернила включают в себя растворитель и стабилизатор. Важно добиться высокой концентрации металла, но не допустить слипания частиц между собой. 
 
Наночастицы размером 20 нм
   Наночастицы размером 20 нм
 
Для получения наночастиц исследователи используют мицеллы, состоящие из поверхностно-активных веществ (ПАВ). Характерная особенность ПАВ — наличие гидрофобных (хвосты) и гидрофильных (головы) функциональных групп. В зависимости от их типа и количества одни ПАВ лучше растворяются в воде, а другие — в органических веществах, образуя прямые или обратные мицеллы. Внутрь последних помещают соединения, которые в ходе реакции и дают наночастицы необходимых материалов. К поверхностно-активным веществам относится аэрозоль ОТ, с которым активно работают сотрудники Института неорганической химии.
 
По словам Павла Сергеевича, классический процесс синтеза наночастиц с использованием обратных мицелл АОТ довольно прост: «Растворяете ПАВ в каких-либо жидких углеводородах, самые ходовые — декан, гексан и изооктан, добавляете растворы нитрата серебра, если хотите получить наночастицы этого металла, затем восстановитель, например гидразин, всё это как следует смешиваете, ждете пару часов — и наночастицы готовы». Реакции восстановления происходят в полостях мицелл, они сдерживают разрастание частиц, в результате чего удается добиться нужных размеров. 
 
В зависимости от типа растворителя можно получать органические или водные чернила. «По сути, это как сравнивать водоэмульсионную краску и эмаль. Последняя имеет неприятный запах, стоит дороже, но качество покрытия при ее использовании значительно выше, зато водоэмульсионная краска экологичнее. Выбор зависит от сферы применения», — рассказывает Павел Поповецкий. После производства чернил они наносятся на подложку, затем удаляется стабилизатор и получается рисунок микросхемы. Ученый отмечает: «Используемый нами ранее классический метод получения наночастиц в неводных средах хорош почти всем, но только не производительностью. К тому же ее крайне сложно увеличить, сохранив при этом размер частиц на нужном уровне. В нашей лаборатории смогли решить эту проблему».
 
На ранних этапах исследований ИНХ СО РАН был предоставлен грант Российского научного фонда на разработку новых способов производства, концентрирования и обработки красок для печатной электроники. В результате этого проекта была создана новая методика выделения наночастиц в динамической эмульсии, позволившая сохранить срок, в течение которого их размер остается неизменным. При этом сотрудникам института удалось увеличить производительность синтеза примерно в 30 раз в сравнении с классическими подходами. В ИНХ СО РАН был создан уникальный способ неводного электрофоретического концентрирования, позволивший производить чернила, которые можно хранить годами. 
 
 
Изучением печатных технологий в лаборатории химии экстракционных процессов ИНХ СО РАН ученые занимаются с 2015 года. Тогда был получен грант Российского научного фонда, направленный на разработку новых рецептур чернил. Работы велись под руководством заведующего лабораторией химии экстракционных процессов ИНХ СО РАН доктора химических наук Александра Ивановича Булавченко. Сейчас Павел Поповецкий разрабатывает собственные направления исследований. РФФИ и правительство Новосибирской области предоставили гранты на поиск альтернативных стабилизаторов в качестве замены традиционно используемого в лаборатории АОТ. Благодаря этому планируется снизить количество примесей в получаемых на основе чернил пленках. «АОТ содержит натрий и серу. Если от первого элемента благодаря новой методике синтеза мы вполне можем избавиться, то второй цепляется к серебру почти намертво. При обработке удалить его нельзя. Неионные ПАВ не содержат серу и натрий, легче и полнее удаляются, но получаемые с их помощью наночастицы, как правило, не заряжены. Это плохо влияет на их стабильность», — рассказывает Павел Сергеевич. Исследователям уже удалось получить заряженные частицы в неионном стабилизаторе. Концентрация металла в выделяемых чернилах оказалась ниже, чем при старом подходе, но пленки можно получать при более низких температурах. Еще одно направление работы ученого — поиск стабилизаторов, дающих возможность чернилам диспергироваться как в воде, так и в органических растворителях. Это позволит использовать в одном и том же печатном оборудовании независимо от его предназначения как сольвентные, так и водные краски.
 
Несмотря на то, что сегодня печатные технологии массово не используются, исследователями разных странах мира предлагаются все новые и новые способы их применения. В Израиле, к примеру, при помощи современных методов печатают микросхемы и многослойные устройства из полупроводниковых, металлических и диэлектрических частиц. В США проводились опыты по печати на ткани металлическими чернилами. Оказалось, что под действием сжатия свойства нанесенного рисунка сохраняются. В дальнейшем это можно будет использовать в спортивной одежде, у тренеров появится возможность дистанционно следить за физическим состоянием спортсменов. Печатные технологии планируется задействовать и в производстве средств коммуникации. Корейские ученые при помощи серебряных чернил смогли разработать гибкие микросхемы с прозрачностью около 98 %, которые помогут при изготовлении сенсорных дисплеев.
 
Использование печатных технологий в производстве электроники, по оценкам экспертов, позволит сэкономить десятки миллиардов долларов. При этом способ нанесения чернил может быть любым, главное — научиться получать достаточное количество красок и обеспечить их продолжительное хранение. Ученые считают, что решение этой проблемы — вопрос времени, поэтому уже в обозримом будущем новый способ производства сможет стать достойной альтернативой традиционному.
 
Дмитрий Медведев, студент отделения журналистики ГИ НГУ
 
Фото предоставлены исследователем
 
Что такое координационные полимеры и как с их помощью можно положить молекулу в контейнер – рассказывает д.х.н., в.н.с. ИНХ СО РАН Андрей Потапов.
 
 

Проект «КЛАССный ученый» создан для того, чтобы ученики разных школ Новосибирска узнали, что такое настоящая наука и вживую пообщались с исследователями из НИИ и вузов.

С проектом сотрудничают специалисты практически всех научных направлений. Каждый год в апреле они отправляются в школы, гимназии и лицеи для того, чтобы показать, насколько интересно и увлекательно то, чем ежедневно занимаются физики и геофизики, геологи и археологи, экономисты и математики, филологи, этнографы и многие другие.

На канале выкладываются видео, связанные с проектом. 

Почему важно изучать гидраты, каким может быть их практическое применение и как они влияют на потепление климата Земли, рассказывает д.х.н., г.н.с. ИНХ СО РАН Андрей Манаков.
 
Новости Сибирской науки (30.03.2021)
 

Гигантский ресурс углеводородов — как им можно воспользоваться

Газовые гидраты — твердые льдоподобные вещества, в одном объеме которых может находиться до 170 объемов газа. Кристаллический каркас гидратов построен из связанных водородными связями молекул воды. В этом каркасе есть полости молекулярного размера, в которых и размещаются молекулы газов или легколетучих жидкостей. Классические примеры гидратообразователей — углеводороды до бутана, инертные газы, многие фреоны. Из жидкостей — ацетон, четыреххлористый углерод и т. д. и т. п. Впервые гидрат (гидрат хлора) был открыт в начале XIX века знаменитым Хэмфри Дэви. Природные гидраты были открыты в 1960-х годах учеными бывшего СССР.

— Как современная наука описывает процессы нуклеации (зародышеобразования), роста и диссоциации газовых гидратов?

— Эти процессы описываются кинетическими моделями, которые описывают и многие другие гетерогенные процессы (например, замерзание жидкостей, кристаллизация из газовой фазы). Естественно, все эти модели адаптированы к гидратообразованию, подобрана соответствующая параметризация. В общем, адаптированная гетерогенная кинетика.

Нуклеация — это процесс образования очень малого кристалла, зародыша, из которого далее растет макроскопический кристалл гидрата. В классической теории нуклеации предполагается, что зародыш образуется за счет случайной флуктуации (например, в растворе) и если его размер превосходит некоторый критический, то он способен к дальнейшему росту. Сейчас появляются данные, что структура этого кристалла-зародыша отличается от структуры растущего из него гидрата, то есть возникший зародыш претерпевает какие-то превращения перед тем, как превратиться в гидратный кристалл. Еще один интересный момент. Ранее предполагалось, что нуклеация гидрата происходит «в произвольной точке поверхности контакта вода—газ или вода—насыщенная газом органическая жидкость». Сейчас все больше свидетельств, что ситуация сложнее, необходима как минимум тройная линия контакта: вода—газ—стенка (особенно если стенка металлическая). Мы неоднократно наблюдали ситуацию, когда при наличии свободного контакта вода—газ нуклеация гидрата происходила на стенке стеклянной кюветы (граница вода—стекло). Скорее всего, гидрат образуется на той поверхности, которая предоставляет ему для этого наиболее благоприятные условия (для гетерогенной нуклеации ситуация вполне стандартная, но конкретно в случае гидратов не совсем изученная). В связи с этим много работ посвящено поиску поверхностей — катализаторов гидратообразования. Складывается, правда, ощущение, что поиск (в значительной степени) идет более по методу «научного тыка» — тестируются самые разнообразные вещества (включая неизбежные графены и нанотрубки). Решительного успеха пока нет. Интересны такие катализаторы для газогидратных технологий хранения газов и разделения газовых смесей, где необходимо быстро получать большие количества гидратов.

Не менее важный момент — в современных технологиях добычи нефти и газа газогидраты вызывают значительные осложнения. Например, при шельфовой добыче нефти из находящейся на дне скважины под давлением выходит горячий поток из нефти, рассола и попутного газа. В трубе он охлаждается. Если температура и давление окажутся подходящими, то может образоваться гидратная пробка, удалить которую непросто и дорого. Такие же ситуации возникают на наших северных газовых месторождениях, где по промысловым трубопроводам идет газ, вода и, возможно, газовый конденсат. Гидратные пробки здесь образуются немного по другому механизму, но ситуацию это не изменяет. Обычно образование гидратных пробок предотвращают закачкой метанола, гликолей или солевых растворов: при постоянном давлении растворение этих веществ в воде приводит к падению равновесной температуры гидратообразования (термодинамические ингибиторы). Это дорого и, мягко говоря, неэкологично (потом все эти растворы надо как-то утилизировать). Альтернативный способ — разрабатываемые сейчас «малодозовые» ингибиторы гидратообразования, в частности кинетические ингибиторы. Их добавки замедляют нуклеацию гидрата настолько, что за время нахождения в опасной по гидратообразованию зоне трубопровода (например, пока поток не вышел в более теплую часть трубы) гидрат просто не успевает образоваться. Эти добавки влияют именно на нуклеацию.

Рост и разложение гидрата. Можно сказать, что одним из относительно малоисследованных направлений является управление ростом гидратов. Если мы просто возьмем воду и надавим на нее гидратообразователем, то гидрат вырастет в виде пленки на поверхности воды. Эта пленка изолирует газ от воды, и реакция прекращается. Чтобы процесс шел дальше, нужно механически ломать эту пленку. Существуют вещества (в том числе обыкновенные ПАВы), которые не дают образоваться этой прочной пленке, в результате гидрат образуется в виде рыхлой массы, которая выталкивается на стенки реактора. Такой вот способ управления. Еще один интересный момент — морфология гидратов. В зависимости от условий роста можно получать достаточно экзотические кристаллы гидрата — от обычных кубиков до «усов», длина которых в тысячи раз превышает поперечные размеры (причина образования — одна из граней гидрата растет в какой-то точке на поверхности, к которой есть приток воды и газа, а тело кристалла при этом выдавливается в объем газа). Эти «усы» могут срастаться в колонии из параллельных кристаллов и образовывать причудливые фигуры. Мы наблюдали своеобразные формы роста гидратных пленок, при которых возникали образования, по форме схожие с клубнями топинамбура. Формой роста кристаллов можно управлять с использованием растворенных добавок, но полной ясности, как это делать, пока нет.

 

— Что такое эффект самоконсервации газовых гидратов?

— Эффект самоконсервации гидратов при температурах ниже 0°С — резкое замедление скорости разложения гидрата, вызванное образованием на его поверхности корки льда. Возникает при температурах от –30°С до почти 0°С. Упрощая ситуацию, можно сказать, что при разложении гидрата выделяется жидкая вода, которая замерзает и образует эту самую изолирующую пленку. Ниже –30°С вода замерзает, но пленки не образует. Проявление эффекта самоконсервации сильно зависит от размера и совершенства структуры куска гидрата. Большие куски прозрачного гидрата (сантиметры, десятки сантиметров) могут долго (месяцы) храниться в морозилке обычного холодильника с небольшой потерей газа (надо только в пакет положить, чтобы лед с поверхности не испарялся). Частицы размером миллиметр и меньше на воздухе практически не консервируются, разлагаются довольно быстро. Недавно мы показали, что если частицы гидрата покрыты нефтью, то могут консервироваться даже частицы размером в несколько десятков микрон — нефть помогает формировать плотную ледяную корку. Этот эффект можно использовать для хранения газов.

 

— Какова роль эффекта «памяти воды» в гидратообразовании?

— Этот эффект весьма интересный, но «мутный». Разумеется, он не имеет никакого отношения к «памяти воды», о которой некоторое время назад говорили в телевизионных передачах. По сути, это кинетический эффект, связанный с уменьшением времени нуклеации гидрата из воды, которая перед этим уже проходила цикл образования — разложения гидрата. Уменьшение очень существенное: если первого образования гидрата можно ждать несколько суток, то второе происходит за десятки минут, то есть различие по времени на порядки. Если вода после первого цикла постояла какое-то время, то эффект уменьшается вплоть до исчезновения. Механизмы этого явления неясные. Раньше в основном говорили про изменения в структуре воды (водного раствора газа), про пересыщение воды гидратообразователем после разложения гидрата. Недавно обнаружили, что после разложения гидрата в воде остается большое количество микропузырьков гидратообразователя с большой суммарной поверхностью, которые и вызывают быстрый рост гидрата. С одной стороны, объяснение хорошее, но... эффект памяти наблюдается и для гидратов, которые плавятся в гомогенную жидкость (гидрат тетрагидрофурана, гидраты тетраалкиламмониевых солей). Здесь уже про пузырьки говорить не приходится.

— Какую функцию выполняет химическая среда, в частности различные поверхностно-активные вещества, ПАВы, растворенные соли, кислотно-щелочной баланс?

— ПАВы меняют морфологию роста гидрата — от пленки к «гидратной шуге». Растворенные соли снижают равновесные температуры гидрата (при постоянном давлении, при постоянной температуре повышают равновесное давление). В общем, влияние такое же, как и на лед. Еще как-то влияют на кинетику нуклеации, но тут данные противоречивые. Кислотно-щелочной баланс — тут пока сказать нечего. Опять же зависит от того, чем этот баланс создается.

— О чем свидетельствуют новые данные о фазовых диаграммах систем с гидратообразованием (в том числе и в некоторых пористых средах)?

— Пока затрудняюсь сказать что-то общеинтересное. Из неожиданного: не так давно установлено, что в полости гидратов в значительных количествах может включаться аммиак. Очень гидрофильная молекула! Ранее считалось, что такие вещества могут только разрушать гидрат. Правда, и температуры разложения гидратов аммиака очень низкие, до –100°С.

— Каковы природные запасы углеводородных гидратов в океанах и многолетнемерзлых породах в мире и в России?

— Скопления обнаружены на шельфах практически всех материков, в осадках озера Байкал, в вечной мерзлоте (Канада, Китай). Больше всего газа в морских скоплениях, находящихся в нескольких сотнях метров под дном. Здесь наиболее достоверное количество газа составляет 10 в пятнадцатой степени кубических метров газа (больше, чем в скоплениях традиционного типа). Общемировые запасы гидратного метана в придонных скоплениях (непосредственно на дне и первые метры под дном) оцениваются в 3,5 на 10 в тринадцатой степени кубических метров. Примерно столько же в мерзлоте, но по мерзлотным гидратам оценки плохие, они мало исследованы (в России особенно).

— Какое влияние гидраты оказывают или могут оказать на климат Земли и на климатические изменения в северных регионах России?

— Сценарий стандартный и давно описанный. Гидраты в природе находятся вблизи границы своей фазовой устойчивости. Метан — парниковый газ, более эффективный, чем углекислый. Потепление ведет к разложению гидратных скоплений, выделяющийся метан усиливает парниковый эффект. В принципе сценарий выглядит реалистично. Известный Ямальский кратер, возможно, имеет отношение к гидратам (вернее, реликтовые скопления гидратов, которые остались после повышения температуры мерзлоты за счет явления самоконсервации, могут иметь отношение к возникновению этого кратера).

— Реально ли газогидратное захоронение диоксида углерода?

— В принципе реально, но... закладывается хорошая «бомба» для будущего. Спасибо нам не скажут.

— Какие технологии на основе газовых гидратов разработаны и опробованы в мире (например, в Канаде, Японии) и в РФ?

— Известны четыре технологии: 1) снижение давления в пласте ниже равновесного; 2) нагрев пласта выше равновесной температуры; 3) закачка в пласт термодинамических ингибиторов (рассолов, метанола); 4) замещение связанного в гидрате метана на диоксид углерода. По гидратным технологиям мы сейчас отстаем. Если в начале 1990-х наши специалисты ездили за границу помогать разворачивать гидратные исследования, то теперь все наоборот: Китай и Япония проводят опыты по добыче гидратного метана (хотя добыча пока невыгодна). Например, в 2017 году Геологическая служба Китая провела тестовые испытания добычи метана в Южно-Китайском море из скопления гидратов в глинистых породах. К сожалению, в России систематических исследований природных гидратов нет.

— Где в России исследуются гидраты?

— В Москве — ВНИИГАЗ, РГУНГ имени Губкина, «Сколково», ИПНГ РАН; в Санкт-Петербурге — ВНИИОкеангеология; в Уфе и Казани — университеты; в Тюмени — ИКЗ СО РАН; в Новосибирске — ИНХ СО РАН, ИНГГ СО РАН, ИТ СО РАН; в Якутске — ИПНГ СО РАН; в Иркутске — ЛИН СО РАН; во Владивостоке — университет и ТОИ ДВО РАН.

— Каковы народнохозяйственные перспективы хранения и транспортировки газа в гидратной форме?

— По оценкам специалистов ВНИИГАЗ, в России может быть выгодным газоснабжение гидратным газом малых потребителей и создание сезонных хранилищ газа в вечной мерзлоте.

Мое частное мнение. Пока крупномасштабная транспортировка газа в виде гидрата проигрывает сжиженному газу. Если серьезно встанет вопрос безопасности (например, серьезная диверсия на терминале сжиженного газа), то гидратная технология выйдет на первый план — гидраты так не взрываются.

Интервью взял Владимир Тесленко, кандидат химических наук

Ученые из Института химии твердого тела и механохимии СО РАН в коллаборации со специалистами из Института неорганической химии им. А. В. Николаева СО РАН получили композиционный твердый электролит с высокой проводимостью. Он не подвержен деградации под воздействием тока и остается стабильным при температуре до 200 °С.
 
Наука в Сибири (25.02.2021)
 
Металлорганические каркасные структуры (МОК) — довольно необычный и перспективный материал. Благодаря своим необычным структурным свойствам — микропористые структуры с высокой идентичностью пор, размер которых составляет до единиц нанометров — один грамм такого композита может обладать площадью поверхности до 3—5 тысяч кв. м. и использоваться как адсорбенты, газоселективные мембраны.
 
«Это высокопористая структура. Мы поместили в его поры литиевую соль (перхлорат лития) и исследовали свойства полученного композита. Была идея получить композиционный твердый электролит, обладающий высокой проводимостью по ионам лития. Она сопоставима с проводимостью жидких электролитов, которые обычно используются в литиевых источниках тока. Материал перспективен для литиевой электрохимической энергетики, для создания твердотельных электрохимических устройств на базе полностью твердотельных аккумуляторов (all-solid-state batteries)», — объясняет старший научный сотрудник лаборатории неравновесных твердофазных систем ИХТТМ СО РАН кандидат химических наук Артём Сергеевич Улихин.
 
Композиционный твёрдый электролит
   Композиционный твердый электролит
 
Композиционные твердотельные электролитные системы имеют ряд преимуществ перед жидкими. Во-первых, они позволяют изменять механические и транспортные свойства путем варьирования микроструктуры и концентрации инертного наполнителя. Во-вторых, такие системы устойчивы к высоким температурам (выдерживают длительный нагрев до 150 °С и кратковременный нагрев до 200—250 °С, сохраняя при этом свои свойства). «Всё зависит как от матрицы, так и ионной соли. Конкретно наш электролит остается стабильным при температурах до 150 °С и способен выдерживать тепловые удары до 200 °С», — отмечает ученый.
 
В литературе на сегодняшний день описано много твердотельных источников тока, но чаще всего для них используются керамические материалы, в них достаточно сложно создать развитую поверхность между электродом и электролитом. Это приводит к тому, что контакт между электродом и электролитом не очень хороший. Помимо этого, необходимо, чтобы электролит был очень тонким (доли микрон) для снижения внутреннего сопротивления конечного устройства. «Необходимо обеспечить хороший контакт между электролитом и электродом. Керамика очень прочная, но, к сожалению, с ней это трудно реализуемо. Наш материал изначально представляет собой порошок, который в дальнейшем можно формовать в каком угодно виде, в том числе создавать градиентный переход между электродом и электролитом. В общем, он позволяет создать хорошую границу контакта, что позволяет повысить энергоэффективность конечного твердотельного электрохимического устройства», — рассказывает Артём Улихин.
 
По словам исследователя, производство материала в лабораторных масштабах такое же недорогостоящее, как и для жидких электролитов. Но плюс еще и в том, что для их получения не требуется высоких температур (для керамики необходимо до 1 000 °С, чтобы получить однофазный, плотный и тонкий материал, там есть ряд больших трудностей и проблем). С созданным в ИХТТМ СО РАН материалом таких сложностей нет. 
 
За синтезирование материала отвечает лаборатория металлорганических координационных полимеров, которой заведует член-корреспондент РАН Владимир Петрович Федин.