Лаборатория возникла в 1961 г., она была выделена из лаборатории благородных металлов и первоначально называлась лабораторией золота и серебра. Впоследствии круг решаемых задач существенно расширился, и она была переименована. Однако и сейчас изучение процессов в растворе с участием комплексов золота является важнейшим направлением исследований лаборатории. Первым заведующим был д.х.н., проф. Б. И. Пещевицкий. С 1993 по 2018 г. лабораторией руководил д.х.н., проф. И. В. Миронов.
С 2018 года заведующий лабораторией - д.х.н. Гущин Артем Леонидович.
Научные направления Наиболее значимые результаты Международные связи Педагогическая деятельность Гранты и стипендии Публикации
Заведующий лабораторией | д.х.н. ГУЩИН Артем Леонидович |
55-27 |
316-56-32 Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. |
312(I) |
Заместитель заведующего | д.х.н. МИРОНОВ Игорь Витальевич |
55-51 |
316-56-32 |
307(I) |
Материально-ответственн. | МАТВЕЕВА Мария Михайловна |
55-23 | Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. | 432(II) |
аспирант БАКАЕВ Иван Владимирович |
57-30 | 316-56-32 | 337(II) | |
аспирант БАРДИНА Елена Эдуардовна |
57-61 | Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. | 305(I) | |
к.х.н. ВИНОГРАДОВА Катерина Александровна |
53-40, 55-82 | 316-56-32 Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. | 306(I), 327(I) | |
к.х.н. КОКОВКИН Василий Васильевич |
55-44 | 316-56-32 Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. |
321(I) | |
к.х.н. МАКОТЧЕНКО Евгения Васильевна |
57-61 | 316-56-32 Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. |
305(I) | |
к.х.н. РОМАШЕВ Николай Филиппович |
57-30 | 316-56-32 Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. |
337(II) | |
к.х.н. ХАРЛАМОВА Виктория Юрьевна |
55-51 | 316-56-32 Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. |
307(I) | |
к.х.н. ФОМЕНКО Яков Сергеевич |
55-27 | 316-56-32 Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. |
312(I) |
За 57 лет существования лаборатории выполнены исследования огромного количества систем, относящихся к самым разным областям комплексообразования в растворах. Получены данные о константах равновесий множества процессов с участием комплексов золота(III) и золота(I) с неорганическими и органическими лигандами. Для ряда превращений определены также константы скорости. Изучен целый ряд систем на основе серебра(I). Детально исследовано образование комплексов ртути(II), в том числе смешанных, с галогенидными и псевдогалогенидными лигандами. Многие из изученных процессов моделируют превращения в реальных экологических, геохимических и производственных условиях. На основе полученных данных были сделаны обобщения, которые позволили существенно развить теорию ступенчатого комплексообразования. В частности, были сделаны выводы о природе транс-влияния, развиты представления о ступенчатых эффектах в константах устойчивости.
Были разработаны приемы изучения сложных равновесий в многокомпонентных растворах, создано соответствующее специализированное математическое обеспечение — программы для обработки спектров и других экспериментальных характеристик, расчета констант, их доверительных интервалов и равновесного состава.
В 1980-2000 г.г. проводились систематические исследования влияния ионного состава среды при высоких ионных силах на равновесия в растворах. Были разработаны приемы учета такого влияния и получены полезные обобщения. В частности, была показана широкая применимость соотношения для изменения констант, аналогичного правилу Харнеда для сильных электролитов. В рамках этих же исследований был изучен ряд систем сильных электролитов и определены их коэффициенты активности.
В середине 70-х годов в лаборатории зародился и был достаточно разработан метод микродугового оксидирования, позволяющий создавать покрытия с уникальными свойствами (твердость, адгезия, химическая и износостойкость) на вентильных металлах, в первую очередь на алюминии и его сплавах, а также на титане. Этот метод получил очень широкое развитие в стране и за рубежом. Помимо получения чисто оксидных покрытий, изучения их свойств и сопутствующих явлений, были разработаны способы нанесения покрытий, содержащих переходные металлы (медь, железо, никель и др.) и их соединения, что существенно расширяет область возможного применения таких покрытий. В частности, были получены биосовместимые кальций-фосфатные покрытия на титане, которые прошли биологические испытания.
На основе результатов исследований в лаборатории были разработаны экстракционные способы получения высокочистого золота. Один из них (с использованием дихлордиэтилового эфира — хлорекса) был внедрен в промышленность.
Были разработаны методики синтеза новых комплексов золота(III) с интересными свойствами. В частности, комплексы (ДКС), содержащие в своем составе, помимо золота, другой металл, в дальнейшем использовались для получения стехиометрических смесей и сплавов металлов. Проводились исследования комплексов золота(III) с азотсодержащими макроциклическими лигандами.
С использованием электрохимических методов были изучены процессы растворения серебра и золота в некоторых электролитах на основе сульфита натрия. Достигнуты высокие выходы по току. Методики были опробованы на реальных образцах.
• Prof. Rosa Llusar, Universitat Jaume I (Castellon, Spain).
• Prof. Manuel Basallote, University of Cadiz (Spain).
• Prof. Rita Hernandez-Molina, University of La-Laguna (Tenerife, Spain).
• Prof. Eric Manoury and Prof. Rinaldo Poli, Laboratoire de Chimie deCoordination (Toulouse, France).
Ряд сотрудников лаборатории по совместительству являются преподавателями вузов.
Виноградова К.А. — старший преподаватель кафедры аналитической химии ФЕН НГУ, ведет практические занятия по аналитической химии со студентами 2 курса биологического отделения и старший преподаватель кафедры фундаментальной медицины ИМП НГУ, ведет семинарские занятия по физической и неорганической химии и практические занятия по неорганической химии со студентами 1 курса иностранного отделения.
Фотоархив:
2024:
РНФ
"Синтез и исследование противоопухолевой активности координационных соединений благородных металлов на основе редокс-активных аценафтениминовых лигандов"
- руководитель к.х.н. Я.С. Фоменко
РНФ
"Применение производных пиразоло[1,5-a][1,10]фенантролина для дизайна гетерометаллических белых люминофоров"
- руководитель к.х.н. К.А. Виноградова
РНФ
"Макроциклические комплексы золота: стабилизация Au(II) макроциклическими тетраарилпорфиринами"
- руководитель д.х.н. А.Л. Гущин
РНФ-НСО
"Комплексы родия и иридия с аценафтенгидразонами как катализаторы электрохимического восстановления CO2"
- руководитель к.х.н. Н.Ф. Ромашёв
Стипендия Президента Российской Федерации молодым ученым и аспирантам
- стипендиат к.х.н. Я.С. Фоменко
Стипендия благотворительного фонда Владимира Потанина
- стипендиат магистрант НГУ В.И. Комлягина
Стипендия Правительства Новосибирской области для проведения перспективных научных исследований и разработок
- стипендиат аспирант И.В. Бакаев
Стипендия Президента Российской Федерации для аспирантов и адъюнктов
- стипендиат аспирант И.В. Бакаев
2023:
РНФ
"Координационные соединения благородных металлов на основе редокс-активных лигандов класса ароматических акцепторных дииминов "
- руководитель Соколов М.Н.
РНФ "
Макроциклические комплексы золота:стабилизация Au(II) макроциклическими тетраарилпорфиринами" -
- руководитель Гущин А.Л.
РНФ
"Применение производных пиразоло[1,5-a][1,10]фенантролина для дизайна гетерометаллических белых люминофоров "
- руководитель Виноградова К.А.
РНФ-НСО:
“Комплексы родия и иридия с аценафтенгидразонами как катализаторы электрохимического восстановления CO2"
- руководитель Ромашёв Н.Ф.
СТИПЕНДИЯ ПРЕЗИДЕНТА РОССИЙСКОЙ ФЕДЕРАЦИИ МОЛОДЫМ УЧЕНЫМ И АСПИРАНТАМ (КОНКУРССП-2022)
- стипендиат Фоменко Я.С.
РНФ-НСО:
"Комплексные соединения ванадия и меди с редокс-активными лигандами класса аценафтениминов: синтез и исследование каталитической активности"
- руководитель Фоменко Я.С.
2024:
Публикации в отечественных журналах (обзоры – в скобках):
Публикации в зарубежных журналах (обзоры – в скобках):
Методические пособия:
Доклады на конференциях:
Приглашенный доклад Гущина А.Л. на III международном симпозиуме "Noncovalent Interactions in Synthesis, Catalysis, and Crystal Engineering" (Новосибирск, НИОХ СО РАН)
Metallophilic interactions in the chemistry of gold complexes bearing N-heterocyclic ligands
Приглашенный доклад Гущина А.Л. на XXII Менделевском конгрессе по общей и прикладной химии (Сочи, Сириус)
Ключевой доклад Гущина А.Л. на Всероссийской конференции им. академика В.И. Овчаренко "Органические радикалы и органическая электрохимия: фундаментальные и прикладные аспекты" (Новосибирск, МТЦ СО РАН)
КОМПЛЕКСЫ БЛАГОРОДНЫХ МЕТАЛЛОВ С РЕДОКС-АКТИВНЫМИ БИС(ИМИНО)АЦЕНАФТЕНАМИ
Новогодний доклад Гущина А.Л. о научных и не только успехах лаборатории в 2024 году
2023:
Публикации в отечественных журналах (обзоры – в скобках):
Публикации в зарубежных журналах (обзоры – в скобках):
Ключевой доклад Гущина А.Л. на Международной конференции по химии «Байкальские чтения – 2023» (Иркутск, Россия):
Публикации в ведущих журналах -
Важнейшие результаты ИНХ СО РАН - в 2023
Лаб.311 в зеркале прессы -
Новосибирские ученые создали гибриды на основе платиновых металлов для борьбы с раком
Соединения на основе иридия смогут стать противораковыми агентами
Новогодний доклад Гущина А.Л. о научных и не только успехах лаборатории в 2023 году
2022:
Публикации в отечественных журналах:
Публикации в международных журналах:
Пленарный доклад Гущина А.Л. «Координационные соединения золота с ароматическими дииминами: синтез, структурные особенности и противоопухолевая активность» на XIX Международной конференции «Спектроскопия координационных соединений» (Туапсе, Россия)
Публикации в ведущих журналах:
Семейство цианогалогенидных октаэдрических кластеров ниобия и тантала
Переключение парамагнитных и ЯМР-термосенсорных свойств комплексов железа за счет спин-кроссовера
"Координационная химия" – учебное пособие для студентов и аспирантов
Новогодний доклад Гущина А.Л. о научных и не только успехах лаборатории в 2022 году
2021:
Публикации в отечественных журналах:
Публикации в международных журналах:
Пленарный доклад Гущина А.Л. на XXVIII Международной Чугаевской конференции по координационной химии (п. Ольгинка, Туапсе, 2021) A. Гущин, Я. Фоменко, Н. Шмелев, Н. Ромашев, И. Бакаев, М. Гонгола, В. Комлягина, Ю. Ларичева, А. Лукоянов, М. Соколов // “КОМПЛЕКСЫ ПЕРЕХОДНЫХ МЕТАЛЛОВ С РЕДОКС-АКТИВНЫМИ АРОМАТИЧЕСКИМИ МОНО-И ДИИМИНОВЫМИ ЛИГАНДАМИ”
Публикации в ведущих журналах - http://niic.nsc.ru/science/publikatsii-v-vedushchikh-zhurnalakh/3643-2021-gold-complexes
Новогодний доклад Гущина А.Л. об успехах лаборатории в 2021 году
2020:
Публикации в отечественных журналах (обзоры – в скобках):
Публикации в международных журналах (обзоры – в скобках):
2019:
Публикации в отечественных журналах:
1. Фоменко Я.С., Надолинный В.А., Ефимов Н.Н., Коковкин В.В., Гущин А.Л. "Биядерный комплекс оксованадия(IV) с мостиковым хлоранилатным лигандом: синтез и магнитные свойства" // Коорд. химия. 2019. Т. 45. № 11. С. 672-677.
2. Макотченко Е.В., Байдина И.А., Корольков И.В. "Синтез и структура гетеробиядерных комплексов [AuCl(m-Dien*)PtCl3] и [AuCl(m-Dien*)PtCl3] 0.5H2O" // Журн. неорг. химии. 2019. Т. 64. № 1. С. 23-30.
3. Гущин А.Л., Рогачев А.В., Фоменко Я.С., Соколов М.Н. "Халькогенидные кластерные комплексы переходных металлов пятой группы: синтетические и структурные аспекты" // Журн. структ. химии. 2019. Т. 60, № 10, 2019, C. 1595-1642 (ОБЗОР).
4. Соколов М.Н., Гущин А.Л. "На пути к тонкому неорганическому синтезу: манипуляции с мостиковыми лигандами в халькогенидных кластерах" // Коорд. химия. 2019. Т.45. № 6. С. 323-340 (ОБЗОР).
5. Коренев В.С., Абрамов П.А., Гущин А.Л., Стась Д.В., Бабаев В.М., Ризванов И.Х., Соколов М.Н. "Включение уранила в полость полиоксометаллата. Синтез и характеризация [(UO2)8P8W48O184]24–" // Журн. неорган. химии. 2019. Т. 64. № 9. С. 923–932.
6. Шмакова А.А., Гущин А.Л., Абрамов П.А., Соколов М.Н. "Синтез и электрозхимические свойства ((CH3)2NH2)7[P2W17NbO62]" // Журн. структ. химии. 2019. Т. 60, № 6, 2019, C. 1002-1007.
Публикации в международных журналах:
1. Terleeva O.P., Slonova A.I., Rogov A.B., Kokovkin V.V., Mironov I.V. “Effect of chloride and sulphate anions as minor impurities in silicate alkaline electrolyte on plasma electrolytic oxidation of aluminium alloys “// Materials Research Express. 2019. V. 6. P. 015009
2. Terleeva O.P., Slonova A.I., Rogov A.B, Matthews A, Yerokhin A. “Wear resistant coatings with a high friction coefficient produced by plasma electrolytic oxidation of al alloys in electrolytes with basalt mineral powder additions” // Materials. 2019. V. 12, № 7. P. 2738
3. Plyusnin P.E., Slavinskaya E.M., Kenzhin R.M., Kirilovich A.K., Makotchenko E.V, Stonkus O.A., Shubin Y.V., Vedyagin A.A. “Synthesis of bimetallic AuPt/CeO2 catalysts and their comparative study in CO oxidation under different reaction conditions”// Reac. Kinet. Mech. Cat. 2019. V. 127, № 1. P. 69.
4. Kokovkin V.V., Mironov I.V., Korotaev E.V., Shayapov V.R., Shakirova O.G., Lavrenova L.G. “Studies on sulfate iron(II) complex with tris(pyrazol-1-yl)methane exhibiting spin crossover in aqueous solutions” // ChemistrySelect. 2019. V. 4, № 32. P. 9360.
5. Romashev N.F., Gushchin A.L., Fomenko I.S., Abramov, P.A., Mirzaeva, I.V., Kompan'kov, N.B., Kal'nyi D.B., Sokolov M.N. “A new organometallic rhodium(I) complex with dpp-bian ligand: Synthesis, structure and redox behaviour” // Polyhedron. 2019. V. 173. P. 114110.
6. Kostin G.A., Plyusnin P.E., Filatov E.Y., Vedyagin A.A., Kal'nyi D.B. “Double complex salts [PdL4][RuNO(NO2)4OH] (L=NH3, Py) synthesis, structure and preparation of bimetallic metastable solid solution Pd0.5Ru0.5” // Polyhedron. 2019. V. 159. P. 217.
7. Dorovskikh S.I., Vikulova E.S., Kal'nyi D.B., Shubin Y.V., Asanov I.P., Maximovskiy E.A., Gutakovskii A.K., Morozova N.B., Basova T.V. “Bimetallic Pt,Ir-containing coatings formed by MOCVD for medical applications” // J. Мater. Sci.: Mater. Med. 2019. V. 30. N 6. Р. 69.
8. Gushchin A.L., Rogachev A.V., Fomenko I.S., Romashev N.F., Nadolinny V.A., Abramov P.A., Laricheva Y.A., Sokolov M.N. "A novel Nb2S4 complex with a dithiophosphinate ligand: synthesis, structure and redox properties" // Polyhedron. 2019. V. 158. P. 458.
9. Fomenko I.S., Gushchin A.L., Abramov P.A., Sokolov M.N., Shul’pina L.S., Ikonnikov N.S., Kuznetsov M.L., Pombeiro A.J.L., Kozlov Y.N., Shul’pin G.B. "New oxidovanadium(IV) complexes with 2,2’-bipyridine and 1,10-phenathroline ligands. Synthesis, structure and high catalytic activity in oxidations of alkanes and alcohols with peroxides" // Catalysts. 2019. V. 9. P. 217
10. Petrov, P.A.; Sukhikh, T.S.; Nadolinny, V.A.; Bogomyakov, A.S.; Laricheva, Y.A.; Piskunov, A.V. "Di-tert-butylcatecholate derivatives of titanocene" // New J. Chem. 2019. V. 43. 17. Р. 6636.
11. Dovydenko I.S., Laricheva Y.A.,. Korchagina K.V, Grigoryeva A.E., Ryabchikova E.I., Kompankov N.B., Pischur D.P., Gushchin A.L., Apartsin, Sokolov M.N. "Interaction of Hydrophobic Tungsten Cluster Complexes with a Phospholipid Bilayer" // J. Phys. Chem. B. 2019. V. 123, № 41. Р. 8829.
12. Sokolov M.N., Mihailov M.A., Brylev K.A., Sukhikh T.S., Eltsov I.V., Stass D.V., Gushchin A.L., Kitamura N., Mironova A.D. "Functionalization of [Re6Q8(CN)6]4– Clusters by Methylation of Cyanide Ligands" // New J. Chem. 2019. V. 43. P. 16338.
13. A.D. Mironova, M.A. Mikhajlov, T.S. Sukhikh, K.A. Brylev, A.L. Gushchin, I.V. Eltsov, D.V. Stass, E.I. Gogyunov, V.K. Brel, and M.N. Sokolov, Synthesis, Structure and Luminescence Properties of a {Mo6I8} Complex with (C6F5)2PO2 Ligands // Z. Anorg. Allg. Chem. V. 645, № 18-19. P. 1135.
14. Gushchin A.L., Ooi B.-L., Harris P., Abramov P.A., Sokolov M.N. A Novel Niobium Cluster Aqua Ion with Capping μ4-Se Ligand // Z. Anorg. Allg. Chem. V. 645, № 4. P. 398.
15. Mukhacheva A.A., Shmakova A.A., Volchek V.V., Romanova T.E., Benassi E., Gushchin A.L., Yanshole V., Sheven D.G., Kompankov N.B., Abramov P.A., Sokolov M.N. Reactions of [Ru(NO)Cl5]2− with pseudotrilacunary {XW9O33}9− (X = AsIII, SbIII) anions // Dalton Trans. 2019. V. 48. P. 15989.
16. Afanas'eva V.A., Glinskaya L.A. Influence of anion variation and cation modification on the packing of tetraazamacrocyclic Au(III) complexes // Journal of Molecular Structure. https://doi.org/10.1016/j.molstruc.2019.127343
Доклад Гущина А.Л. на XIX конкурсе-конференции научных работ имени академика А.В. Николаева отмечен дипломом 3 степени.
А.Л. Гущин, Я.С. Фоменко, Н.Ф. Ромашев, П.А. Абрамов, Шульпина Л.С., Шульпин Г.Б.
Комплексные соединения переходных металлов с редокс-активными аценафтен-1,2-дииминами: синтез, строение, электрохимические и каталитические свойства
2018:
Лаборатория синтеза комплексных соединений (первоначально Лаборатория химии лантанидов) является одним из старейших подразделений Института (основана в 1958 г). В настоящее время зав. лаб. - д.х.н., профессор РАН Соколов Максим Наильевич.
Заведующий лабораторией | д.х.н. СОКОЛОВ Максим Наильевич |
54-55 | 316-58-45 Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. | 425(II) |
Материально-ответственн. | МАТВЕЕВА Мария Михайловна |
55-23 | 316-58-45 Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. |
432(II) |
д.х.н. АБРАМОВ Павел Александрович |
55-26 | 316-58-45 Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. |
428(II) | |
д.х.н. АДОНИН Сергей Александрович |
59-85 | Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. | 218(I) | |
к.х.н. ВЕРШИНИН Михаил Александрович |
53-74 | Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. | 330(I) | |
к.х.н. КОРЕНЕВ Владимир Сергеевич |
53-72 | Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. | 326(I) | |
д.х.н. ЛАВРЕНОВА Людмила Георгиевна |
57-74 | Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. | 331(I) | |
к.х.н. МИХАЙЛОВ Максим Александрович |
53-72 | Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. | 326(I) | |
к.х.н. ПЕТРОВ Павел Алексеевич |
53-30 | 316-58-45 Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. |
340(II) | |
к.х.н. УСОЛЬЦЕВ Андрей Николаевич |
59-54 | Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. | 329(I) | |
аспирант БОНДАРЕНКО Михаил Александрович |
53-74 | Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. | 330(I) | |
аспирант ЗАГУЗИН Александр Сергеевич |
59-54 | Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. | 329(I) | |
аспирант КОРОБЕЙНИКОВ Никита Алексеевич |
59-54 | Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. | 329(I) | |
аспирант ШАМШУРИН Максим Владимирович |
53-72 | Адрес электронной почты защищен от спам-ботов. Для просмотра адреса в вашем браузере должен быть включен Javascript. | 326(I) |
Лаборатория синтеза комплексных соединений (первоначально Лаборатория химии лантанидов) является одним из старейших подразделений Института (основана в 1958 г). Первым заведующим лабораторией стал В.М. Шульман - ученик А.А. Гринберга. За время существования лаборатории в ней было развито значительное количество тематик - начиная от синтеза сульфидов и селенидов металлов и заканчивая комплексами переходных металлов с такими необычными лигандами, как стабильные нитроксильные радикалы или производные природных терпенов.
Лаборатория химии лантанидов ИНХ СО РАН ( нынешняя лаборатория синтеза комплексных соединений ) создана в 1958 г. в Ленинграде В.М. Шульманом - учеником А.А. Гринберга, который, в свою очередь, являлся учеником выдающегося химика Л.А. Чугаева - основателя координационной химии в России. Лаборатория располагалась в здании Ленинградского технологического института пищевой промышленности и состояла из выпускников ЛТИ, ЛГУ и МГУ. Кафедру химии этого института возглавлял Б.В. Птицын. Три известных химика- Б.В. Птицын В.М. Шульман и Л.М. Волштейн (тоже ученик А.А. Гринберга ) стояли у истоков развития координационной химии в Академгородке. В 1960 г. сотрудники лаборатории переехали в Новосибирск.
Все прошедшие годы деятельность лаборатории связана с развитием фундаментальных основ координационной химии, в особенности с разработкой путей синтеза новых перспективных соединений и изучением их физико-химических свойств, а также с поиском областей практического применения комплексов.
На первом этапе (1958-1970 гг.) в лаборатории наибольшее внимание уделялось созданию таких растворных методов получения важных неорганических материалов – сульфидов и селенидов металлов, которые позволяют отказаться от использования высокотоксичных сероводорода и селеноводорода. Так, Т.В. Крамарёва исследовала возможность бессероводородного получения сульфидов цинка и кадмия для люминофоров. Было решено в качестве источника серы использовать малотоксичную тиомочевину. Для разработки оптимальных режимов процессов получения сульфидов, в том числе в виде плёнок, потребовались количественные данные о константах устойчивости тиомочевинных комплексов металлов в водных растворах. Это послужило стимулом к созданию В.М. Шульманом и Т.В. Крамарёвой новой разновидности потенциометрического метода определения констант устойчивости комплексов, основанного на измерении редокс-потенциалов систем ион металла – тиомочевина - формамидиндисульфид - вода. Оригинальный подход к определению констант устойчивости был распространен В.М. Шульманом и учениками на комплексы с другими органическими серосодержащими лигандами, а также на смешанные водно - органические среды, что придало методу, основанному на изучении редокс-потенциалов систем ион металла - лиганд – окисленная форма лиганда -растворитель, общий характер. Метод был оценен научной общественностью, описан в монографиях, например, в [1], неоднократно использовался в работах других исследователей. Для синтеза селенидов металлов вместо селеноводорода применили селеномочевину (В.Л .Варанд).
С 1971 г. в лаборатории более широко стали развиваться исследования по синтезу координационных соединений. Внимание к комплексам металлов с серосодержащими лигандами в лаборатории сохранилось, сместившись к синтезу молекулярных предшественников сульфидов металлов - координационных соединений металлов с серосодержащими лигандами, имеющих "готовые" связи металл-сера [2-6]. Особый интерес вызывает синтез летучих комплексов, при разложении которых возможно получение пленок сульфидов металлов методом газофазного химического осаждения при относительно невысоких температурах (oС). Решение задачи потребовало разработки методов получения большого числа соединений Zn(II), Cd(II), Pb(II), Mn(II), Ni(II), Co(II), PЗЭ(III) с бидентатными серосодержащими лигандами (алкилксантогенат-, диалкилдитиокарбамат- и диизобутилдитиофосфинат-ионы), а также разнолигандных координационных соединений на основе этих хелатов и азотистых гетероциклов [5, 6]. В ряде лабораторий ИНХ СО РАН новые летучие соединения использованы для разработки технологий получения токопроводящих, диэлектрических и фоточувствительных слоев ( In2S3,ZnS, CdS ), а также слоев электролюминофоров желтого и красного свечения на основе ZnS, легированного Mn или Eu. Цикл работ Ларионов С.В., Клевцова Р.Ф., Глинская Л.А., Варанд В.Л., Земскова С.М., Кокина Т.Е., Леонова Т.Г., Щукин В.Г. «Разнолигандные координационные соединения 1,1-дитиолатов металлов с азотистыми гетероциклами - новые перспективные предшественники сульфидов металлов: синтез, строение, свойства» удостоен премии МАИК «Наука / Интерпериодика» по итогам конкурса на лучшие публикации 2001 г. (журнал "Координационная химия" ).
На основе комплексных соединений Ni(II) и Ni(IV) с серосодержащими лигандами и дисульфидов этих лигандов в ИХКГ СО РАН ( Н.М. Бажин, В.Ф. Плюснин ) созданы перспективные для записи информации фотохромные системы, имеющие величину цикличности фотохромного превращения порядка 104 [7].
В связи с задачей создания энергетических компонентов композиционных материалов для новой техники [8], по инициативе А.В. Николаева сотрудники лаборатории выполнили цикл работ по разработке путей синтеза энергетических координационных соединений, обладающих способностью к горению или взрыву. В результате создана большая группа комплексов 3d-переходных металлов, имеющих энергоёмкие органические азотсодержащие лиганды ( производные гидразина, азотистые гетероциклы ) и неорганические анионы – окислители. Свойства соединений исследованы совместно с сотрудниками ИК СО РАН ( Н.Н. Кундо ), ИХКГ СО РАН, предприятиями Перми, Бийска, Казани, Дзержинска, Ленинграда. Показано, что добавки комплексов эффективны при горении высокометаллизированных систем ( В.Е. Зарко ). Сотрудники ИХТТМ СО РАН ( В.В. Болдырев, Р.К. Тухтаев ). обнаружили, что при горении в инертной атмосфере комплексов нитратов металлов с энергоёмкими органическими лигандами образуются мелкодисперсные металлы или сульфиды металлов.
В 1958 г. автор статьи выполнил под руководством зав. кафедрой общей химии МГУ К.Г. Хомякова дипломную работу, целью которой являлось исследование одного из путей получения оксидов Fe и Mn – важнейших компонентов магнитных полупроводников – ферритов, обладающих прямоугольной петлёй гистерезиса. Интерес к синтезу веществ, обладающих ценными магнитными свойствами, способствовал постановке в лаборатории исследований по получению нескольких групп новых координационных соединений-магнетиков.
Известно, что в большинстве случаев лиганды координационных соединений являются диамагнитными веществами. В НИОХ СО РАН получены устойчивые парамагнитные лиганды – свободные нитроксильные радикалы 3-имидазолина и 3- имидазолидина, содержащие разнообразные донорные функциональные группы ( Л.Б. Володарский, И.А. Григорьев, В.А. Резников ). На базе этих лигандов в ИНХ СО РАН создан новый класс парамагнитных координационных соединений, в том числе гетероспиновых [9-11]. Найдено, что координационные соединения Ni(II) и Co(II) с парамагнитными енаминокетонами 3-имидазолидина являются новым типом низкотемпературных молекулярных ферромагнетиков ( В.И. Овчаренко ). Синтезированы комплексы Ni(II), Pd(II) с новым типом лигандов – стерически затрудненными 1,2- гидроксиламинооксимами ( В.Н.Кириченко, Л.А. Косарева ). Обнаружена их способность к окислительному дегидрированию, что позволило получить первую группу комплексов с нитроксильными радикалами, в которых центральный атом координирует лишь атом азота радикального центра. Впервые выделены летучие комплексные соединения с лигандами – нитроксильными радикалами. Создание комплексов с нитроксильными радикалами 3- имидазолина послужило основой для глубокого изучения исследователями ИХКГ СО РАН ( Ю.Н. Молин, Р.З. Сагдеев ), ИК СО РАН ( В.Н. Пармон ), ИХФ РАН ( А.И. Кокорин ) явления косвенного внутримолекулярного обменного взаимодействия спинов неспаренных электронов в этих комплексах методами ЭПР и ЯМР. Результаты по синтезу новых парамагнитных комплексов на основе лигандов-нитроксильных радикалов, полученные С.В. Ларионовым и В.И. Овчаренко, вошли в цикл работ "Нитроксильные радикалы имидазолина", авторскому коллективу которого в 1994 г. присуждена Госпремия РФ в области науки и техники. Кроме того, в лаборатории разработаны пути синтеза разнообразных координационных полимеров на основе комплексов с производными нитроксильного радикала 3-имидазолина, а также первых спин-меченых клатрохелатов Fe(II) ( А.Б. Бурдуков ).
При синтезе энергетических комплексов нитратов металлов с азотистыми гетероциклами получено комплексное соединение Fe(4-амино-1,2,4-триазол)3(NO3)2, которое обладает обратимыми термохромными свойствами. Исследование магнитных свойств этого комплекса ( В.Н. Икорский ) привело к обнаружению аномалии - резкого высокотемпературного спинового перехода. Дальнейшие исследования (Л.Г. Лавренова , М.Б. Бушуев ) привели к созданию представительной группы соединений Fe(II) с тремя координированными молекулами 1,2,4-триазола или его 4-замещённого производного, обладающих резким обратимым переходом низкий спин - высокий спин, который сопровождается термохромным эффектом [12]. Обнаружено значительное влияние природы внешнесферного аниона и заместителя в лиганде на критическую температуру спинового перехода ( 200 – 400 К). Синтезированные термохромные соединения представляют практический интерес как материалы для создания дисплея, устройства токовой защиты [13]. Некоторые соединения Cu(II) с диамагнитными производными тетразола являются низкотемпературными молекулярными ферромагнетиками.
Новым типом соединений Cu(II) являются комплексы, имеющие в твердой фазе анионы CuCl62- и CuBr62- ( З.А. Савельева ). Некоторые из соединений обладают низкотемпературным термохромизмом [14].
В последние годы в лаборатории совместно с НИОХ СО РАН ( А.В. Ткачев ) развивается исследование по синтезу оптически активных координационных соединений переходных металлов на основе хиральных лигандов – химически модифицированных природных терпеноидов 3-карена, альфа-пинена, лимонена, содержащихся в возобновляемом природном лесохимическом сырье [15]. Получен и охарактеризован большой ряд комплексов с бидентатными и полидентатными лигандами, имеющими открытоцепную и макроциклическую (Л.И. Мячина) топологию гетероатомных фрагментов. Хиральные координационные соединения представляют интерес как потенциальные катализаторы для энантиоселективного тонкого органического синтеза, они могут обладать биологической активностью. Некоторые из комплексов Cu(II) и Co(II) проявили каталитическую активность в реакции полимеризации этилена.
Нет сомнения, что продолжение в лаборатории работ по синтезу координационных соединений и исследованию их строения и свойств совместно с сотрудниками ИНХ СО РАН и других институтов приведет к новым интересным результатам.
Литература:
Научная деятельность лаборатории является весьма разносторонней. Среди важнейших научных результатов разных лет можно перечислить такие как разработка методов синтеза летучих комплексов, при разложении которых возможно получение пленок сульфидов металлов методом газофазного химического осаждения, получение большого спектра соединений переходных металлов со стабильными нитроксильными радикалами, открытие комплексов железа(II) с азолами, в которых в широком диапазоне температур наблюдается явление спин-кроссовера, сопряженное с термохромизмом, работы по получению хиральных координационных соединений с терпеновыми лигандами.Работы сотрудников лаборатории были отмечены в 1994 г. Государственной премией РФ в области науки и техники (за цикл работ "Нитроксильные радикалы имидазолина") и в 2001 г. премией издательства МАИК "Наука / Интерпериодика" (за цикл работ "Разнолигандные координационные соединения 1,1-дитиолатов металлов с азотистыми гетероциклами - новые перспективные предшественники сульфидов металлов: синтез, строение, свойства").
В настоящее время в лаборатории развиваются следующие основные научные направления:
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Лаборатория тесно сотрудничает со следующими институтами и организациями:
В лаборатории проходят обучение студенты-дипломники и аспиранты, выполняют исследовательскую работу студенты младших курсов Новосибирского государственного университета. За последние три года в лаборатории были защищены две диссертации на соискание ученой степени кандидата химических наук.
Сотрудники лаборатории активно занимаются педагогической деятельностью в Новосибирском государственном университете.
2017:
© ИНХ СО РАН 1998 – 2025 г.