№ 5 (2790) от 3 февраля 2011 г.

МАТЕРИАЛЫ,
ОПРЕДЕЛЯЮЩИЕ СТИЛЬ ЖИЗНИ

26 января в конференц-зале Выставочного центра СО РАН академик Фёдор Андреевич Кузнецов рассказывал школьникам Академгородка о той роли, которую играют материалы в развитии человеческой цивилизации.

Л. Юдина, «НВС»

Изобретение многих материалов, можно сказать, поворачивало «колесо истории», изменяло стиль жизни. Прошлое, настоящее, будущее нашло отражение в лекции известного ученого-материаловеда.

Каменный век — основные орудия труда и оружие изготовлялись главным образом из камня, использовались также дерево и кость, позднее — глина для посуды. Бронзовый век — распространение металлургии бронзы, бронзовых орудий и оружия. Заметный прогресс в развитии человечества связан с распространением металлургии железа. Материалы, существенно изменившие жизнь людей — бумага, каучук-резина, фарфор-фаянс, ряд металлов — алюминий, титан, цирконий, редкоземельные, без которых просто невозможно представить день сегодняшний. Появился кевлар — полимерное волокно, превосходящее по прочности многие металлы, из него «шьют» бронежилеты, делают сверхпрочные канаты и многое другое.

Расширение спектра и характеристик материалов вело к усложнению и многофункциональности объектов народного хозяйства.

Энергетика — начало начал

Академик Ф. А. Кузнецов начал с того, что в подробностях осветил тему «Атомная энергетика».

Иллюстрация

— Атомный реактор — сложнейшее сооружение, для создания которого требуется большое количество самых разных материалов, исключительных по своим свойствам — современных, стойких, сильных. Ведь надо учитывать происходящие внутри сложнейшие процессы, радиоактивность, которую требуется наглухо изолировать, чтобы сделать АЭС безопасными и т.д., и т.п.

История ядерной энергетики охватывает период более полувека. Сегодня она стала важной частью энергетических технологий. Доля выработки электроэнергии на АЭС постоянно растёт. Мировым лидером по суммарной мощности реакторов являются США, а по доле атомной энергии в энергетическом балансе — Франция (75 %). Всего в мире насчитывается 441 энергетический реактор общей мощностью 374682 МВт и 65 — в стадии сооружения. Атомная энергетика выдает 14 % энергии в мире. В России — 17 %, но по ближайшим планам — 25-30 %.

Главное топливо для АЭС — уран, который состоит из ряда изотопов. А нужен только один, в котором сумма протонов и нейтронов — 235. Цепная ядерная реакция с разложением изотопа уран-235 сопровождается выделением колоссальной энергии.

Поскольку в природном уране его содержится меньше процента, а наиболее распространенные ядерные реакторы работают с топливом, в котором должно содержаться 3-5 % урана-235, то прежде, чем изготовить топливо для АЭС, повышают содержание этого изотопа в уране. Процесс обогащения проводят с использованием летучего соединения гексафторида урана — UF6. Затем гексафторид урана, обогащенный по 235-му изотопу, переводят в двуокись UO2, из которой изготавливают «таблетки» тепловыделяющих элементов (ТВЭЛов).

Таблетки оксида урана будут работать длительное время при температуре выше тысячи градусов. При этом они не должны разлагаться, взаимодействовать с окружающей средой.

Видя неподдельный интерес школьников, учёный продолжил тему и показал, как идет выделение атомной энергии, как «работает» уран-235, претерпевая цепную реакцию, какая могучая энергия выделяется: миллионы электронвольт в расчете на распад одного ядра. И что же дальше? Будущее атомной энергетики связывают с термоядерным синтезом. В его основе могут быть разные процессы. Например, взаимодействие двух изотопов водорода — тяжёлого дейтерия и трития: соединяясь, они образуют атом гелия. В расчёте на один акт выделяется около 20 млн электронвольт — это больше, чем при разложении атомов урана. К тому же запасов урана, по разным подсчётам, хватит, самое большее, лет на сто.

Ф. А. Кузнецов показал экспериментальный образец будущего реактора, названного русским сокращением ТОКАМАК — ТОроидальная КАмера с МАгнитными Катушками. В такой камере и нужно разогнать электроны, создать плазму с температурой выше 1 млн градусов, и тогда пойдет реакция.

Действующей термоядерной станции на сегодня не существует. Но предложенные разные её варианты говорят о том, что термоядерная энергия — дело будущего. Многие коллективы упорно работают над решением задачи.

Учёный особо подчеркнул, что любые достижения науки должны попадать в правильные руки. Иначе может случиться трагедия. Пример тому — атомные бомбы, сброшенные в августе 1945 г. на японские города Хиросиму и Нагасаки. В бомбе, сброшенной на Хиросиму — тот же уран-235, но с более высокой концентрацией, чем в топливе для АЭС. Цепная реакция и дала врыв огромной мощи.

Ещё более страшна термоядерная бомба. И она, в отличие от станций, уже имеется в наличии.

История овладения атомной энергией — иллюстрация того, что кроме знаний нужно ещё иметь строгие законы общества,запрещающие использование знаний во вред людям.

Без современной электроники — не жизнь

Многое в нашей жизни просто невозможно без современной электроники. Даже представить невозможно, что случится, если электроника откажет — начнётся настоящий хаос.

Ф. А. Кузнецов в подробностях рассказал школьникам об основных типах полупроводниковых приборов — p-n диод, p-n-p транзистор, n-канальный MOSFET транзистор. В основном на этих трёх типах строится огромное разнообразие современных электронных приборов. 60 последних лет кардинально изменили мир. Оказалось, что отдельные приборы можно группировать — строить интегральные схемы. Эта область развивается стремительно. Сегодня на одной интегральной схеме-чипе размещаются тысячи транзисторов, в процессоре для компьютера — миллиарды и миллиарды.

— Помню время, когда в нашем Институте неорганической химии стоял компьютер на вакуумных лампах, он занимал целый этаж. Сейчас маленький персональный компьютер может выполнять намного больше операций, чем тот великан. Переход от ламповой электроники к твердотельной — событие эпохальное. А базировалось оно на большом количестве материалов, на материаловедении, о котором и ведется речь.

Мы переходим в информационное общество. В первую очередь это, конечно, компьютер. В него нужно ввести исходную информацию, и он произведет необходимые операции и сформулирует решение. Сейчас информация во многих случаях вводится вручную. Но предполагается устроить систему датчиков, которые будут выполнять процедуру автоматически.

Решение, найденное компьютером, исполняет человек. Но и здесь можно построить систему приборов, которые возьмут эти функции на себя. Для создания устройств сбора информации и исполнения решений нужны разнообразные материалы. Неудивительно поэтому, что в программах развития многих стран поиск новых материалов — задача высшего приоритета.

Регулирование использования электроэнергии — также поле деятельности полупроводниковых приборов. Электроэнергия сама по себе — сложный продукт. Расходуется она чаще всего варварски, по большей части впустую. А если электроэнергию использовать интеллигентно, режим менять грамотно, расход можно существенно сократить, в некоторых случаях процентов на 90. В электросбережении тоже большая надежда на новые материалы. Сейчас много говорится о силовой электронике — электронике больших токов. Она основана на полупроводниках. Федор Андреевич рассказал о применении систем силовой электроники, продемонстрировал на впечатляющем слайде мировую сеть Интернет, а затем интересно и образно повел повествование о солнечной энергетике.

Да здравствует Солнце!

Многие источники энергии, действующие ныне, не вечны. Довольно успешно идет активный поиск альтернативных вариантов. Солнце же сулит блага, не ограниченные во времени. Сейчас в мире солнечной энергии используется меньше одного процента. В числе лидеров — Германия, Испания, Италия, Чехия. Самая большая на сегодня солнечная станция действует, и довольно успешно, в одном из районов Испании.

Международное энергетическое агентство провело огромную работу по исследованию территорий, на которых можно разместить солнечные станции. Обозначило, в частности, «солнечный ресурс» шести крупнейших пустынь. Утилизация солнечной радиации, поступающей только на совершенно непригодные для жизни участки этих пустынь, позволяет получать энергию в колоссальных количествах, в десятки раз больших, чем нужно человеку.

Важно в каждом конкретном случае решить, как добывать энергию и как передавать её на большие расстояния. Поражает воображение слайд, на котором показана преобразованная пустыня. Огромное количество солнечных панелей, аккумуляторов, накапливающих энергию, устройства, передающие её в другие регионы Земли. А в самой пустыне — прекрасные поля, не знающие засухи. Ибо вода, глубоко залегающая, с помощью устройств, питаемых солнечной энергией, будет подаваться на плантации.

Пустыни имеются в разных частях света. Энергия нужна всем. Планируется создание глобальной сети передачи энергии по всему земному шару. Существует, например, проект EUMENA «Европа — Ближний Восток — Северная Африка», по которому солнечные станции в пустыне Сахара будут обеспечивать энергией три указанных региона.

Но чтобы осуществлять смелые проекты, нужны различные новые материалы. Электроэнергия передается в основном по металлическим проводам. Это дорого и вызывает большие потери электричества.

Известным японским специалистом проф. Коинума предложен проект использования сверхпроводящих линий передач. По ходу реализации проекта предстоит решить ряд проблем, но они вполне под силу учёным. Скептики говорят — фантастика. Нужно вспомнить, что в первой половине ХХ века и атомная энергия, и электроника сегодняшнего дня были еще большей фантастикой!

Король полупроводников — кремний

В осуществлении многих проектов решающая роль принадлежит кремнию. Его называют королем полупроводников, и он на сегодня наиболее изучен. Многие тайны устройства материи были открыты при изучении кремния, а способы управления состоянием вещества разработаны в процессе совершенствования этого материала. Первый импульс в «кремниевой эпопее» был связан с развитием информационной электроники. Нынешний повышенный интерес обусловлен программами солнечной энергетики.

В конструкции солнечных батарей на солнечных энергостанциях можно использовать разные материалы, но для получения большой энергии кремнию нет альтернативы: просто на Земле нет необходимого количества других элементов, из которых можно делать солнечные батареи.

— Сегодня в год для солнечных элементов требуется 44 тысячи тонн кремния. Общий объем производства в мире достиг 100 тысяч тонн. В будущем пойдет речь о миллионах тонн только для нужд солнечной энергетики.

Естественно, ребят интересовало, откуда берётся кремний, и каким образом будет обеспечиваться требуемое его количество.

Им объяснили, что для электроники кремний нужен особый, очень чистый. Исходный материал — кварц. Он смешивается с графитом. Получают металлургический кремний, который растворяют в хлористом водороде, из смеси выделяют одно нужное соединение — трихлорсилан, подают это вещество в специальный аппарат, где находятся нагретые до высокой температуры стержни. На них идёт осаждение кремния. Ещё ряд процедур — и вырастают нужные монокристаллы. Всё это называется хлоридный (сименс) процесс.

Фёдор Андреевич посвятил слушателей во все тонкости процесса, все детали, от которых зависит, каким в результате будет король полупроводников — кремний.

— В стране есть заводы, где используются методики, разработанные в Институте неорганической химии и Институте физики полупроводников Сибирского отделения. Поскольку требования постоянно повышаются, задачи усложняются, идет планомерное совершенствование процесса.

Где производят полупроводниковый кремний в больших количествах? Один из заводов расположен около Красноярска, в городе Железногорске. Прежде в этом местечке делали современное оружие — на огромном предприятии, построенном внутри огромной скалы. Сейчас один из цехов расширяют, реконструируют под производство кристаллов монокристаллического кремния. Вся аппаратура разработана в России, в том числе с участием ИНХ и ИФП СО РАН. Большое производство создано около Иркутска, идет проектирование и строительство кремниевых производств ещё в ряде городов страны.

— Получение энергии — дело мировой важности, международное. Очевидно, что широкое развитие солнечной энергетики потребует значительных изменений в политическом устройстве мира. Солнышко не делает разницы между нациями, языками и устройством государств. Сейчас во многих странах возникают новые программы развития солнечной энергетики. Так, успешно работает в этом направлении Индия. Сегодня этой стране требуется ежегодно 5 тысяч тонн кремния. Через несколько лет — 20 тысяч тонн. Многие институты СО РАН уже два десятилетия успешно сотрудничают с Индией. Сейчас обсуждается вопрос о создании совместной программы, в которой будут принимать участие исследовательские институты, учебные заведения и промышленные предприятия.

Завершая выступление, учёный напомнил о том, что в первую очередь надо знать, чтобы создавать новые материалы, какие науки привлекать. Материаловедение — область комплекса знаний, и достижение в каждой из наук способствуют его прогрессу.

2011 год объявлен ООН Международным годом химии. Фёдор Андреевич назвал имена великих химиков России и область интересов каждого. Вновь подчеркнув, что материаловедение — любопытнейшее из занятий, он рекомендовал школьникам в будущем заняться этой наукой и затем придти в один из химических институтов Сибирского отделения. Лучше всего — в Институт неорганической химии.

Судя по тем вопросам, что задавали ребята, академик Ф. А. Кузнецов пробудил интерес к материалам, меняющим ход развития цивилизации.

Фото В. Новикова

стр. 3

Версия для печати  
(постоянный адрес статьи) 

http://www.sbras.ru/HBC/hbc.phtml?15+577+1

№ 4 (2789) от 27 января 2011 г.

«АКАДЕМИЧЕСКИЙ ЧАС»
СОБИРАЕТ ЛЮБОЗНАТЕЛЬНЫХ

Снова Выставочный центр СО РАН, уютный конференц-зал. Ровно в 15:00 академик Ф. А. Кузнецов начал очередную научно-популярную лекцию из цикла «Академический час», посвященную материаловедению. «Название темы — „Роль материалов в развитии человеческой цивилизации“ — громкое, но предмет вполне этого заслуживает», — сказал Федор Андреевич. И в ходе увлекательного повествования доказал это. Появление новых материалов влекло за собой ощутимые изменения в жизни людей, науке и технике. Причём процессы шли с колоссальным ускорением на протяжении всей истории цивилизации. Чему в тот или иной период отдавалось предпочтение, можно судить по определению эпох в развитии человечества: век каменный, бронзовый, железный...

Иллюстрация

О том, как появлялись новые материалы, развивались современные методы создания и исследования вещества, мы расскажем в одном из ближайших номеров.

Иллюстрация
Академики Ф. А. Кузнецов и В. М. Фомин среди новосибирских школьников.

Подобные научно-популярные лекции из цикла «Академический час» предполагается организовать во всех научных центрах СО РАН.

Фото В. Новикова

стр. 1

Версия для печати  
(постоянный адрес статьи) 

http://www.sbras.ru/HBC/hbc.phtml?6+576+1

Газета «Навигатор» № 2 (768) от 21.01.2011

Итоги 2011 года. Юбилей академика Скринского

Итоги 2010 года.

Академик Александр Асеев на ежегодной встрече с журналистами подвел итоги прошедшего года. В первую очередь он упомянул две публикации в журнале Nature, которые касаются расшифровки ДНК так называемого денисовского человека.

– Думаю, это войдет в учебники, – сказал А. Асеев.

Были отмечены работы Института ядерной физики на Большом адронном коллайдере – самом крупном физическом проекте начала века. БАК использует два принципа, которые изобретены в ИЯФ СО РАН – метод встречных пучков и электронное охлаждение, что дает возможность получать очень интенсивные и узкие пучки с высокой светимостью. В этом же институте были проведены первые эксперименты по нейтронзахватной терапии опухолевых клеток.

– В ушедшем году начался большой международный проект по протеомике, – продолжил академик, – СО РАН участвует в нем рядом институтов биологического и физического профиля: каждой стране выделена определенная хромосома, и будут исследоваться белки, создающиеся на базе этой хромосомы.

Еще одним направлением работы, отмеченным Асеевым, стало получение новых материалов: на основе методов ионно-плазменного осаждения удалось получить покрытия для внешних слоев авиационной техники, характеризующиеся высокой плотностью и износостойкостью. Над этим проектом институты Сибирского отделения работают совместно с Новосибирским авиационным производственным объединеним им. Чкалова.

Много интересного в изучении свойств нового материала – графена: в институтах неорганической химии и физики полупроводников были разработаны специальные технологии для получения слоев графена, фторографена (используемого для сенсоров) и различных структур на их основе.

Также в ИНХ созданы микроисточники рентгеновского излучения на основе многослойных углеродных нанотрубок, а в ИФП получены лучшие в России фотоприемные матрицы для тепловизионных изображений. Институт катализа разработал технологию абсорбирования вредных газов, Институт нефтегазовой геологии и геофизики разработал специальный комплекс для электромагнитных исследований подземного пространства, который был использован при строительстве нового моста через Обь.

Помимо научных достижений, в 2010 году Сибирское отделение подписало соглашения о сотрудничестве с ведущими российскими компаниями, а также с регионами РФ и зарубежными партнерами. Два ученых СО РАН стали депутатами – главный ученый секретарь Сибирского отделения, директор ИХТТМ, член-корреспондент РАН Николай Ляхов был избран в горсовет, а директор Института геологии и минералогии член-корреспондент РАН Николай Похиленко – в Заксобрание области.

Юбилей академика Скринского

Директор Института ядерной физики им. Г.И. Будкера Сибирского отделения РАН академик Александр Николаевич Скринский 15 января отметил свой 75-летний юбилей.

– Что касается Института ядерной физики, – поделился юбиляр своими рабочими планами, – то в качестве задачи на ближайшее время у нас есть проект электронно-позитронного коллайдера по размерам немного больше, а по энергии даже несколько меньше, чем ВЭПП-4, который работает у нас давно. Однако новый коллайдер будет обладать очень высокой светимостью – суперсветимостью, которая пока не достигнута нигде в мире. С помощью этой установки мы будем продолжать исследования в области физики элементарных частиц, чтобы продвигаться в изучении строения микромира на расстояниях и скоростях много меньше ядерных. Если космология – это взгляд на Вселенную как на целое, исследование ее строения, галактик, их скоплений и звезд, то наша сфера – микрокосмос, исследование взаимодействия элементарных частиц – электронов, лептонов, кварков.

Е. Пустолякова

стр. 15

Версия для печати  
(постоянный адрес статьи) 

http://www.navigato.ru/number/366/publication/11190?print=1

3dnews.ru, 23 ноября 2010 года

Графен: мифы и реальность

Графен: мифы и реальность

Автор: Алла Аршинова

Дата: 23.11.2010

От редакции: затрагивая тему модернизации экономики России и развития высоких технологий в нашей стране, мы ставили задачу не только обратить внимание читателей на недостатки, но и рассказать о положительных примерах. Тем более что таковые есть, и немало. На минувшей неделе мы рассказывали о разработке в России топливных элементов, а сегодня поговорим о графене, за изучение свойств которого «бывший наш народ» недавно получил Нобелевскую премию. Оказывается, и в России, а точнее - в Новосибирске, над этим материалом работают весьма серьезно.

Кремний как основа микроэлектроники прочно завоевал позиции в пространстве высоких технологий, и произошло это не случайно. Во-первых, кремнию относительно легко придать нужные свойства. Во-вторых, он известен науке давно, и изучен «вдоль и поперек». Третья причина заключается в том, что в кремниевые технологии вложены поистине гигантские средства, и делать сейчас ставки на новый материал, пожалуй, мало кто решится. Ведь для этого придется перестраивать огромную промышленную отрасль. Вернее, строить ее почти с нуля.

Тем не менее, есть и другие претенденты на лидерство в качестве полупроводникового материала. Например, графен, который после вручения Нобелевской премии за изучение его свойств, стал очень моден. Для перехода на него с кремния действительно есть основания, так как графен обладает рядом существенных преимуществ. Но получим ли мы в итоге «электронику на графене» - еще не ясно, потому что рядом с достоинствами притаились и недостатки.

Чтобы поговорить о перспективах графена в микроэлектронике и о его уникальных свойствах, мы встретились в Новосибирске с главным научным сотрудником Института неорганической химии им. А. В. Николаева СО РАН, доктором химических наук, профессором Владимиром Федоровым.

Алла Аршинова: Владимир Ефимович, каковы современные позиции кремния в микроэлектронике?

Владимир Федоров: Кремний очень давно используется в отрасли в качестве основного полупроводникового материала. Дело в том, что он легко легируется, то есть, в него можно добавлять атомы различных элементов, которые направленным образом изменяют физические и химические свойства. Подобная модификация высокочистого кремния позволяет получать полупроводниковые материалы n- или р-типа. Таким образом, направленным легированием кремния регулируют важные для микроэлектроники функциональные свойства материалов.

Кремний - действительно уникальный материал, и именно это является причиной того, что в него вложено столько сил, средств и интеллектуальных ресурсов. Фундаментальные свойства кремния изучены настолько детально, что есть распространенное мнение о том, что ему просто не может быть замены. Однако недавние исследования графена дали зеленый свет другой точке зрения, которая заключается в том, что новые материалы могут быть доведены до такой степени, что смогут заменить кремний.

Кристаллическая структура кремния

Подобные дискуссии возникают в науке периодически, и разрешаются они, как правило, только после серьезных исследований. Например, недавно была схожая ситуация с высокотемпературными сверхпроводниками. В 1986 году Беднорц и Мюллер открыли сверхпроводимость в барий-лантан-медном оксиде (за это открытие им была присуждена Нобелевская премия уже в 1987 году – через год после открытия!), которая обнаруживалась при температуре, значительно превышающей значения, характерные для известных к тому времени сверхпроводящих материалов. При этом по строению купратные сверхпроводящие соединения значительно отличались от низкотемпературных сверхпроводников. Затем лавинообразные исследования родственных систем привели к получению материалов с температурой сверхпроводящего перехода 90 К и выше. Это означало, что в качестве хладоагента можно использовать не дорогой и капризный жидкий гелий, а жидкий азот - в газообразном виде его в природе очень много, и к тому же он существенно дешевле гелия.

Но, к сожалению, эта эйфория вскоре прошла после тщательных исследований новых высокотемпературных сверхпроводников. Эти поликристаллические материалы, как и другие сложные оксиды, подобны керамике: они хрупкие и непластичные. Оказалось, что внутри каждого кристалла сверхпроводимость имеет хорошие параметры, а вот в компактных образцах критические токи достаточно невысокие, что обусловлено слабыми контактами между зернами материала. Слабые Джозефсоновские переходы (Josephson junction) между сверхпроводящими зернами не позволяют изготовить материал (например, сделать провод) с высокими сверхпроводящими характеристиками.

Солнечная батарея на основе поликристаллического кремния

С графеном может получиться такая же ситуация. В настоящее время у него найдены очень интересные свойства, но еще предстоит провести широкие исследования для окончательного ответа на вопрос о возможности получения этого материала в промышленном масштабе и использования его в наноэлектронике.

Алла Аршинова: Объясните, пожалуйста, что такое графен, и чем он отличается от графита?

Владимир Федоров: Графен – это моноатомный слой, образованный из атомов углерода, который, как и графит, имеет решетку в форме сот. А графит это, соответственно, уложенные друг на друга в стопочку графеновые слои. Слои графена в графите связаны между собой очень слабыми Ван-дер-Ваальсовыми связями, потому и удаётся, в конце концов, оторвать их друг от друга. Когда мы пишем карандашом, это пример того, что мы снимаем слои графита. Правда, след карандаша, остающийся на бумаге, это еще не графен, а графеновая мультислойная структура.

Теперь каждый ребенок может на полном серьезе утверждать, что он не просто переводит бумагу, а создает сложнейшую графеновую мультислойную структуру

А вот если удается расщепить такую структуру до одного слоя, тогда получается истинный графен. Подобные расщепления и провели Нобелевские лауреаты по физике этого года Гейм и Новоселов. Им удалось расщепить графит с помощью скотча, и после исследования свойств этого «графитового слоя» выяснилось, что у него очень хорошие параметры для использования в микроэлектронике. Одним из замечательных свойств графена является высокая подвижность электронов. Говорят, графен станет незаменимым материалом для компьютеров, телефонов и прочей техники. Почему? Потому что в этой области идет тенденция на ускорение процедур обработки информации. Эти процедуры связаны с тактовой частотой. Чем выше рабочая частота, тем больше можно обработать операций в единицу времени. Поэтому скорость носителей заряда очень важна. Оказалось, что у графена носители заряда ведут себя как релятивистские частицы с нулевой эффективной массой. Такие свойства графена действительно позволяют надеяться, что можно будет создать устройства, способные работать на терагерцовых частотах, которые недоступны кремнию. Это одно из наиболее интересных свойств материала.

Нобелевские лауреаты по физике 2010 года Андрей Гейм и Константин Новоселов

Из графена можно получить гибкие и прозрачные пленки, что также очень интересно для целого ряда применений. Еще одним плюсом является то, что это очень простой и очень легкий материал, легче кремния; к тому же в природе углерода предостаточно. Поэтому если действительно найдут способ использовать этот материал в высоких технологиях, то, конечно, он будет иметь хорошие перспективы и, возможно, заменит в коне концов кремний.

Но есть одна фундаментальная проблема, связанная с термодинамической устойчивостью низкоразмерных проводников. Как известно, твердые тела подразделяются на различные пространственные системы; например, к системе 3D (three-dimensional) относят объемные кристаллы. Двумерные (2D) системы представлены слоистыми кристаллами. А цепочечные структуры относятся к одномерной (1D) системе. Так вот низкоразмерные – 1D цепочечные и 2D слоистые структуры с металлическими свойствами с термодинамической точки зрения не устойчивы, при понижении температуры они стремятся превратиться в систему, которая теряет металлические свойства. Это так называемые переходы «металл-диэлектрик». Насколько устойчивы будут графеновые материалы в каких-то устройствах, еще предстоит выяснить. Конечно, графен интересен, как с точки зрения электрофизических свойств, так и механических. Считается, что монолитный слой графена очень прочен.

Алла Аршинова: Прочнее алмаза?

Владимир Федоров: Алмаз обладает трехмерными связями, механически он очень прочный. У графита в плоскости межатомные связи такие же, может, и прочнее. Дело в том, что с термодинамической точки зрения алмаз должен превращаться в графит, потому что графит стабильнее алмаза. Но в химии есть два важных фактора, которые управляют процессом превращения: это термодинамическая стабильность фаз и кинетика процесса, то есть скорость превращения одной фазы в другую. Так вот, алмазы в музеях мира лежат уже столетиями и в графит не хотят превращаться, хотя должны. Может быть, через миллионы лет они все-таки превратятся в графит, хотя было бы очень жалко. Процесс перехода алмаза в графит при комнатной температуре протекает с очень медленной скоростью, но если вы нагреете алмаз до высокой температуры, тогда кинетический барьер преодолеть будет легче, и это точно произойдет.

Графит в первозданном виде

Алла Аршинова: То, что графит можно расщеплять на очень тонкие чешуйки, известно уже давно. В чем же тогда было достижение нобелевских лауреатов по физике 2010 года?

Владимир Федоров: Вы, наверное, знаете такого персонажа, как Петрик. После вручения Нобелевской премии Андрею Гейму и Константину Новоселову он заявил, что у него украли Нобелевскую. В ответ Гейм сказал, что, действительно, подобные материалы были известны очень давно, но им дали премию за изучение свойств графена, а не за открытие способа его получения как такового. На самом деле, их заслуга в том, что они смогли отщепить от высоко ориентированного графита очень хорошие по качеству графеновые слои и детально изучить их свойства. Качество графена очень важно, как и в кремниевой технологии. Когда научились получать кремний очень высокой степени чистоты, только тогда и стала возможна электроника на его основе. Такая же ситуация и с графеном. Гейм и Новоселов взяли очень чистый графит с совершенными слоями, сумели отщепить один слой и изучили его свойства. Они первые доказали, что этот материал обладает набором уникальных свойств.

Алла Аршинова: В связи с вручением Нобелевской премии ученым с русскими корнями, работающим заграницей, наши соотечественники, далекие от науки, задаются вопросом, можно ли было прийти к таким же результатам здесь, в России?

Владимир Федоров: Наверное, можно было. Просто они в свое время уехали. Их первая статья, опубликованная в Nature, написана в соавторстве с несколькими учеными из Черноголовки. По-видимому, наши российские исследователи тоже вели работу в этом направлении. Но завершить ее убедительным образом не получилось. Жалко. Возможно, одной из причин являются более благоприятные условия для работы в зарубежных научных лабораториях. Я недавно приехал из Кореи и могу сравнить условия работы, которые мне были там предоставлены, с работой дома. Так вот там я ничем не был озабочен, а дома – полно рутинных обязанностей, которые отнимают много времени и постоянно отвлекают от главного. Меня обеспечивали всем, что было необходимо, причем исполнялось это с поразительной быстротой. Например, если мне нужен какой-то реактив, я пишу записку - и на следующий день мне его привозят. Подозреваю, что у нобелевских лауреатов тоже очень хорошие условия для работы. Ну и им хватило упорства: они многократно пытались получить хороший материал и, наконец, достигли успеха. Они действительно потратили большое количество времени и сил на это, и премия в этом смысле вручена заслуженно.

Алла Аршинова: А какие именно преимущества дает графен по сравнению с кремнием?

Владимир Федоров: Во-первых, мы уже сказали, что он обладает высокой подвижностью носителей, как говорят физики, носители заряда не обладают массой. Масса всегда тормозит движение. А в графене электроны движутся таким образом, что можно считать их не обладающими массой. Такое свойство уникально: если и есть другие материалы и частицы со схожими свойствами, то встречаются они крайне редко. Этим графен оказался хорош, этим же он выгодно отличается от кремния.

Во-вторых, графен обладает высокой теплопроводностью, и это очень важно для электронных устройств. Он очень легкий, а графеновый лист - прозрачный и гибкий, его можно свернуть. Графен может быть и очень дешевым, если разработают оптимальные методы его получения. Ведь «скотч-метод», который продемонстрировали Гейм и Новоселов, не является промышленным. Этим методом получают образцы действительно высокого качества, но в очень малых количествах, только для исследований.

И сейчас химики разрабатывают другие способы получения графена. Ведь нужно получать большие листы, чтобы поставить производство графена на поток. Этими вопросами занимаемся и мы здесь, в Институте неорганической химии. Если научатся синтезировать графен с помощью таких методов, которые бы позволили получать материал высокого качества в промышленных масштабах, тогда есть надежда, что он произведет революцию в микроэлектронике.

Алла Аршинова: Как, наверное, все уже знают из СМИ, графеновую мультислойную структуру можно получить с помощью карандаша и липкой ленты. А в чем заключается технология получений графена, применяемая в научных лабораториях?

Владимир Федоров: Существует несколько методов. Один из них известен очень давно, он основан на использовании оксида графита. Его принцип довольно прост. Графит помещают в раствор высоко окисляющих веществ (например, серная, азотная кислота и др.), и при нагревании он начинает взаимодействовать с окислителями. При этом графит расщепляется на несколько листочков или даже на одноатомные слои. Но полученные монослои не являются графеном, а представляют собой окисленный графен, в котором есть присоединенный кислород, гидроксильные и карбоксильные группы. Теперь главная задача заключается в том, чтобы эти слои восстановить до графена. Поскольку при окислении получаются частички небольшого размера, то надо их каким-то образом склеить, чтобы получить монолит. Усилия химиков направлены на то, чтобы понять, как можно из оксида графита, технология получения которого известна, сделать графеновый лист.

Есть еще один метод, также достаточно традиционный и известный уже давно - это химическое осаждение из газовой фазы с участием газообразных соединений. Его суть заключается в следующем. Сначала реакционные вещества возгоняют в газовую фазу, потом их пропускают через нагретую до высоких температур подложку, на которой и осаждаются нужные слои. Когда подобран исходный реагент, например, метан, его можно разложить таким способом, чтобы водород отщепился, а углерод остался на подложке. Но эти процессы трудно контролируемы, и идеальный слой получить сложно.

Графен— одна из аллотропных модификаций углерода

Существует и другой метод, который сейчас начинает активно применяться, – метод использования интеркалированных соединений. В графит, как и в другие слоистые соединения, можно помещать между слоями молекулы различных веществ, которые называются «молекулы гостя». Графит – это матрица «хозяина», куда мы поставляем «гостей». Когда происходит интеркаляция гостей в решетку хозяина, естественно, слои разъединяются. Это как раз то, что и требуется: процесс интеркаляции расщепляет графит. Интеркалированные соединения являются очень хорошими предшественниками для получения графена - нужно только вынуть оттуда «гостей» и не дать слоям снова схлопнуться в графит. В этой технологии важным этапом является процесс получения коллоидных дисперсий, которые можно превращать в графеновые материалы. Мы в нашем институте поддерживаем именно такой подход. На наш взгляд, это самое продвинутое направление, от которого ожидаются очень хорошие результаты, потому что из различного рода интеркалированных соединений можно наиболее просто и эффективно получать изолированные слои.

По структуре графен похож на соты. И с недавних пор он стал очень «сладкой» темой

Выделяют и еще один способ, который называют тотальный химический синтез. Он заключается в том, что из простых органических молекул собирают нужные «соты». Органическая химия обладает очень развитым синтетическим аппаратом, который позволяет получать огромное разнообразие молекул. Поэтому методом химического синтеза пытаются получить графеновые структуры. Пока что удалось создать графеновый лист, состоящий примерно из двухсот атомов углерода.

Разрабатываются и другие подходы к синтезу графена. Несмотря на многочисленные проблемы, наука в этом направлении успешно продвигается вперед. Есть большая доля уверенности в том, что существующие препятствия будут преодолены, и графен приблизит новую веху в развитии высоких технологий.